Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T14:59:13.008Z Has data issue: false hasContentIssue false

The effects of centrifugal force on the stability of axisymmetric viscous flow in a rotating annulus

Published online by Cambridge University Press:  26 April 2006

Seiji Sugata
Affiliation:
Department of Geophysics, Kyoto University, Kyoto 606, Japan
Shigeo Yoden
Affiliation:
Department of Geophysics, Kyoto University, Kyoto 606, Japan

Abstract

Axisymmetric flow in a rotating annulus with differential heating is computed for a high-kinematic-viscosity fluid, such as silicone oil, by numerical integration of the Navier–Stokes equations. Linear stability analysis of the steady axisymmetric flow with respect to a wave perturbation gives a transition curve from the axisymmetric regime to the wave regime; the transition curve is similar to that obtained experimentally by Fein & Pfeffer (1976). However, if we neglect the centrifugal force term, the transition curve is not similar, but it resembles the curve for water (a familiar ‘anvil shape’ in the regime diagram). A dimensionless parameter v2(a + b)/8g(ba)4 (where a and 6 are the radii of the inner and outer cylinders, d the depth of the fluid, ν the kinematic viscosity, g the acceleration due to gravity), which equals the ratio of the centrifugal force to the gravity force divided by the Taylor number, is more fundamental than the Prandtl number in determining the shape of the transition curve.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1978a Bifurcation phenomena in steady flows of a viscous liquid. Part I: Theory. Proc. R. Soc. Lond. A359, 126.Google Scholar
Benjamin, T. B. 1978b Bifurcation phenomena in steady flows of a viscous liquid. Part II: Experiments.. Proc. R. Soc. Lond. A 359, 2743.Google Scholar
Benjamin, T. B. & Mullin, T. 1981 Anomalous modes in the Taylor experiment.. Proc. R. Soc. Lond. A 377, 221249.Google Scholar
Benjamin, T. B. & Mullin, T. 1982 Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech. 121, 219230.Google Scholar
Burkhalter, J. E. & Koshchmeider, E. L. 1974 Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17, 19291935.Google Scholar
Chossat, P. Demay, Y. & Iooss, G. 1987 Interactions des modes azimutaux dans le probleme de Coutte—Taylor. Arch. Rat. Mech. Anal. 99, 213248.Google Scholar
Cliffe, K. A. 1989 Numerical calculations of the primary-flow exchange process in the Taylor problem. J. Fluid Mech. 197, 5779.Google Scholar
Cliffe, K. A. & Mullin, T. 1985 A numerical and experimental study of anomalous modes in the Taylor experiment. J. Fluid Mech. 153, 243258.Google Scholar
Cliffe, K. A. & Mullin, T. 1986 A numerical and experimental study of the Taylor problem with asymmetric end conditions. AERE Harwell Rep. TP.1179.Google Scholar
Cliffe, K. A. & Spence, A. 1984 The computation of high order singularities in the finite Taylor problem. In Numerical Methods for Bifurcation Problems (ed. T. Küpper, H. D. Mittelmann & H. Weber), ISNM 70, pp. 129144. Birkhäuser.
Cliffe, K. A. & Spence, A. 1986 Numerical calculations of bifurcations in the finite Taylor problem. In Numerical Methods for Fluid Dynamics, II (ed. K. W. Morton & M. J. Baines), pp. 155176. Clarendon.
Dangelmayr, G. & Armbruster, D. 1983 Classification of Z2-equivariant imperfect bifurcations with corank 2. Proc. Lond. Math. Soc. (3) 46, 517546.Google Scholar
Davey, A. Diprima, R. C. & Stuart, J. T. 1968 On the instability of Taylor vortices. J. Fluid Mech. 31, 1752.Google Scholar
Diprima, R. C. & Grannick, R. N. 1971 A nonlinear investigation of the stability of flow between counter-rotating cylinders. In Proc. IUTAM Symp. 1969, Instability of Continuous Systems (ed. H. Leipholz), pp. 5160. Springer.
Golubitsky, M. & Langford, W. F. 1988 Pattern formation and bistability in flow between counter-rotating cylinders.. Physica D 32, 362392.Google Scholar
Golubitsky, M. & Schaeffer, D. 1985 Singularities and Groups in Bifurcation Theory. Springer.
Golubitsky, M. & Stewart, I. N. 1986 Symmetry and stability in Taylor—Couette flow. SIAM J. Math. Anal. 17, 249288.Google Scholar
Griewank, A. & Reddien, G. 1983 The calculation of Hopf points by a direct method. IMA J. Numer. Anal. 3, 295303.Google Scholar
Guckenheimer, J. & Holmes, P. 1983 Non-linear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Iooss, G. 1986 Secondary bifurcations of Taylor vortices into wavy inflow or outflow boundaries. J. Fluid Mech. 173, 273288.Google Scholar
Jones, C. A. 1981 Non-linear Taylor vortices and their stability. J. Fluid Mech. 102, 249261.Google Scholar
Jones, C. A. 1982 On flow between counter-rotating cylinders. J. Fluid Mech. 120, 433450.Google Scholar
Jones, C. A. 1985 The transition to wavy Taylor vortices. J. Fluid Mech. 157, 135162.Google Scholar
Keller, H. B. 1977 Numerical solutions of bifurcation and non-linear eigenvalue problems. In Applications of Bifurcation Theory (ed. P. H. Rabinowitz), pp. 359384. Academic.
Kreuger, E. R., Gross, A. & DiPrima, R. C. 1966 On the relative importance of Taylor—vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24, 521538.Google Scholar
Langford, W. F. 1979 Periodic and steady-state mode interactions lead to tori. SIAM J. Appl. Maths 37, 2248.Google Scholar
Langford, W. F., Tagg, R., Kostelich, E. J., Swinney, H. L. & Golubitsky, M. 1988 Primary instabilities and bicriticality in flow between counter-rotating cylinders. Phys. Fluids 31, 776785.Google Scholar
Lorenzen, A. & Mullin, T. 1985 Anomalous modes and finite length effects in Taylor—Couette flow. Phys. Rev. A31, 34633465.Google Scholar
Marcus, P. S. & Tuckerman, L. S. 1987a Simulation of flow between concentric rotating spheres. Part 1. Steady states. J. Fluid Mech. 185, 130.Google Scholar
Marcus, P. S. & Tuckerman, L. S. 1987b Simulation of flow between concentric rotating spheres. Part 2. Transitions. J. Fluid Mech. 185, 3165.Google Scholar
Moore, G. & Spence, A. 1980 The calculation of turning points of non-linear equations. SIAM J. Numer. Anal. 17, 567576.Google Scholar
Mullin, T. 1985 The transition to time-dependence in Taylor—Couette flow. Phys. Rev. A31, 12161218.Google Scholar
Mullin, T. & Benjamin, T. B. 1980 Transition to oscillatory motion in the Taylor experiment. Nature 288, pp. 567569.Google Scholar
Mullin, T., Cliffe, K. A. & Pfister, G. 1987 Unusual time dependent phenomena in the Taylor-Couette experiment at moderately low Reynolds number. Phys. Rev. Lett., 58, 22122215.Google Scholar
Mullin, T. & Price, T. J. 1989 An experimental observation of chaos arising from the interaction of steady and time-dependent flows. Nature 340, 294296.Google Scholar
Mullin, T., Tavener, S. J. & Cliffe, K. A. 1989 An experimental and numerical study of a codimension-2 bifurcation in a rotating annulus. Europhys. Lett. 8, 251256.Google Scholar
Schaeffer, D. & Golubitsky, M. 1981 Bifurcation analysis near a double eigenvalue of a model chemical reaction. Arch. Rat. Mech. Anal. 75, 315347.Google Scholar
Schrauf, G. 1986 The first instability in spherical Taylor—Couette flow. J. Fluid Mech. 166, 287303.Google Scholar
Serrin, J. 1959 On the stability of viscous fluid flows. Arch. Rat. Mech. Anal. 3, 113.Google Scholar
Spence, A. & Jepson, A. D. 1984 The numerical calculation of cusps, bifurcation points and isola formation points in two parameter problems. In Numerical methods for Bifurcation Problems (ed. T. Küpper, H. D. Mittelmann & H. Weber), ISNM 70, pp. 502514. Birkhäuser.
Spence, A. & Werner, B. 1982 Nonsimple turning points and cusps. IMA J. Numer. Anal. 2, 413427.Google Scholar
Tuckerman, L. S. 1983 Formation of Taylor vortices in spherical Couette flow. Ph.D. thesis, Massachusetts Institute of Technology.
Werner, B. 1984 Regular systems for bifurcation points with underlying symmetries. In Numerical Methods of Bifurcation Problems (ed. T. Küpper, H. D. Mittelmann & H. Weber), ISMN 70, pp. 567574. Birkhäuser.
Werner, B. & Spence, A. 1984 The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21, 388399.Google Scholar