Hostname: page-component-5f745c7db-j9pcf Total loading time: 0 Render date: 2025-01-06T21:00:23.974Z Has data issue: true hasContentIssue false

The effect of vertically varying permeability on tracer dispersion

Published online by Cambridge University Press:  07 December 2018

Edward M. Hinton*
Affiliation:
BP Institute for Multiphase Flow, University of Cambridge, Madingley Road, CambridgeCB3 0EZ, UK
Andrew W. Woods
Affiliation:
BP Institute for Multiphase Flow, University of Cambridge, Madingley Road, CambridgeCB3 0EZ, UK
*
Email address for correspondence: [email protected]

Abstract

We study the migration of a tracer within an injection-driven flow in a horizontal aquifer in which the permeability varies with depth. The permeability gradient produces a shear and this leads to lateral dispersion of the tracer. In the high permeability regions, the tracer moves substantially faster than the mean flow and eventually enters the nose region of the flow where the depth of the current is less than the depth of the aquifer. Depending on the influence of (i) the viscosity contrast between the injected fluid and the original fluid, and (ii) the vertical permeability gradient, the nose of the current may be of fixed shape or may gradually lengthen with time. This leads to a variety of patterns of dispersal of the tracer, which may either remain in the nose or cycle through the nose and be left behind. Our results illustrate the complexity of the migration of a tracer in a heterogeneous aquifer which has important implications for interpreting the results of tracer tests as may be proposed for monitoring $\text{CO}_{2}$ or gas injected into subsurface reservoirs.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bear, J. 1971 Dynamics of Flow in Porous Media. Elsevier.Google Scholar
Berkowitz, B., Scher, H. & Silliman, S. E. 2000 Anomalous transport in laboratory-scale, heterogeneous porous media. Water Resour. Res. 36 (1), 149158.Google Scholar
Bickle, M. J. 2009 Geological carbon storage. Nat. Geosci. 2 (12), 815818.Google Scholar
Bjorlykke, K. 1993 Fluid flow in sedimentary basins. Sedim. Geol. 86 (1–2), 137158.Google Scholar
Dagan, G. 1984 Solute transport in heterogeneous porous formations. J. Fluid Mech. 145, 151177.Google Scholar
Eames, I. & Bush, J. W. M. 1999 Longitudinal dispersion by bodies fixed in a potential flow. Proc. R. Soc. Lond. A 445 (1990), 36653686.Google Scholar
Farcas, A. & Woods, A. W. 2016 Buoyancy-driven dispersion in a layered porous rock. J. Fluid Mech. 767, 226239.Google Scholar
Gelhar, L. W., Welty, C. & Rehfeldt, K. R. 1992 A critical review of data on field-scale dispersin in aquifers. Water Resour. Res. 28 (7), 19551974.Google Scholar
Györe, D., Stuart, F. M., Gilfillan, S. M. V. & Waldron, S. 2015 Tracing injected CO2 in the Cranfield enhanced oil recovery field (MS, USA) using He, Ne and Ar isotopes. Intl J. Greenh. Gas Control 42, 554561.Google Scholar
Hess, K. M., Wolf, S. H. & Celia, M. A. 1992 Large scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 3. Hydraulic conductivity variability and calculated macrodispersivities. Water Resour. Res. 28 (8), 20112027.Google Scholar
Hesse, M. A. & Woods, A. W. 2010 Buoyant dispersal of CO2 during geological storage. Geophys. Res. Lett. 37.Google Scholar
Hinton, E. M. & Woods, A. W. 2018 Buoyancy-driven flow in a confined aquifer with a vertical gradient of permeability. J. Fluid Mech. 848, 411429.Google Scholar
Huppert, H. E. & Woods, A. W. 1995 Gravity-driven flows in porous layers. J. Fluid Mech. 292, 5569.Google Scholar
Kampman, N., Bickle, M. J., Maskell, A., Chapman, H. J., Evans, J. P., Purser, G., Zhou, Z., Schaller, M. F., Gattacceca, J. C., Bertier, P., Chen, F., Turchyn, A. V., Assayag, N., Rochelle, C., Ballentine, C. J. & Busch, A. 2014 Drilling and sampling a natural CO2 reservoir: implications for fluid flow and CO2 -fluid-rock reactions during CO2 migration through the overburden. Chem. Geol. 369, 5182.Google Scholar
Lake, L. W. 1989 Enhanced Oil Recovery. Prentice Hall.Google Scholar
Mathieson, A., Midgely, J., Wright, I., Saoula, N. & Ringrose, P. 2011 In Salah CO2 storage JIP: CO2 sequestration monitoring and verification technologies applied at Krechba, Algeria. Energy Procedia 4, 35963603.Google Scholar
Neufeld, J. A., Hesse, M. A., Riaz, A., Hallworth, M. A., Tchelepi, H. A. & Huppert, H. E. 2010 Convective dissolution of carbon dioxide in saline aquifers. Geophys. Res. Lett. 37 (22), 26.Google Scholar
Paster, A., Bolster, D. & Benson, D. A. 2013 Particle tracking and the diffusion-reaction equation. Water Resour. Res. 49 (1), 16.Google Scholar
Pegler, S. S., Huppert, H. E. & Neufeld, J. A. 2014 Fluid injection into a confined porous layer. J. Fluid Mech. 745, 592620.Google Scholar
Phillips, O. M. 2009 Geological fluid dynamics. In Sub-surface Flow and Reactions. Cambridge University Press.Google Scholar
Riaz, A., Hesse, M., Tchelepi, H. A. & Orr, F. M. 2006 Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548, 87111.Google Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245 (1242), 312329.Google Scholar
Stalker, L., Boreham, C., Underschultz, J., Freifeld, B., Perkins, E., Schacht, U. & Sharma, S. 2015 Application of tracers to measure, monitor and verify breakthrough of sequestered CO2 at the CO2 CRC Otway Project, Victoria, Australia. Chem. Geol. 399, 219.Google Scholar
Woods, A. W. 2014 Flow in Porous Rocks: Energy and Environmental Applications. Cambridge University Press.Google Scholar
Woods, A. W. & Mingotti, N. 2016 Topographic viscous fingering: fluid–fluid displacement in a channel of non-uniform gap width. Phil. Trans. R. Soc. Lond. A 374, 20150427.Google Scholar
Zheng, Z., Guo, B., Christov, I. C., Celia, M. A. & Stone, H. A. 2015 Flow regimes for fluid injection into a confined porous medium. J. Fluid Mech. 767 (2015), 881909.Google Scholar