Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T18:19:47.013Z Has data issue: false hasContentIssue false

The effect of turbulent motions on particle spatial distribution in high-Reynolds-number particle-laden flows

Published online by Cambridge University Press:  28 November 2023

Xibo He
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
Hongyou Liu*
Affiliation:
Center for Particle-laden Turbulence, Lanzhou University, Lanzhou 730000, PR China
*
Email address for correspondence: [email protected]

Abstract

The spatial relationship between turbulent and particle concentration structures is investigated based on the turbulent velocity and particle concentration data obtained synchronously at the Qingtu Lake Observation Array site. In addition to the observation of particle concentration structures that contain not only large-scale coherence but also significant energy in the high-Reynolds-number atmospheric surface layer (ASL), the scale of turbulent motions that have the most significant coherence with particle concentration is found to follow a 1/2 power scaling law with the local height and ASL thickness. Moreover, large-scale turbulent velocity fluctuations have a significant amplitude modulation effect on particle concentration fluctuations, but the modulating influence is different for small dust particles and large saltating particles. Based on the interphase amplitude modulation, there exists a particle–turbulence structure phase difference that varies with height, which further makes the structure inclination angle of the particle concentration larger than that of the turbulence. In this scenario, a conceptual model reflecting the relationship between the two is proposed, and a quantitative formulation is further derived and found to be in good agreement with the experimental results. These findings and the proposed model contribute insights into particle–turbulence interactions, thereby providing theoretical support for a unified model of turbulence dynamics and particle kinematics.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Antonia, R.A., Chambers, A.J., Friehe, C.A. & Van Atta, C.W. 1979 Temperature ramps in the atmospheric surface layer. J. Atmos. Sci. 36 (1), 99108.2.0.CO;2>CrossRefGoogle Scholar
Baars, W.J., Hutchins, N. & Marusic, I. 2016 Spectral stochastic estimation of high-Reynolds-number wall-bounded turbulence for a refined inner-outer interaction model. Phys. Rev. Fluids 1 (5), 054406.CrossRefGoogle Scholar
Baars, W., Hutchins, N. & Marusic, I. 2017 Self-similarity of wall-attached turbulence in boundary layers. J. Fluid Mech. 823, R2.CrossRefGoogle Scholar
Baars, W.J. & Marusic, I. 2020 a Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 1. Energy spectra. J. Fluid Mech. 882, A25.CrossRefGoogle Scholar
Baars, W.J. & Marusic, I. 2020 b Data-driven decomposition of the streamwise turbulence kinetic energy in boundary layers. Part 2. Integrated energy. J. Fluid Mech. 882, A26.CrossRefGoogle Scholar
Baars, W.J., Talluru, K.M., Hutchins, N. & Marusic, I. 2015 Wavelet analysis of wall turbulence to study large-scale modulation of small scales. Exp. Fluids 56 (10), 188.CrossRefGoogle Scholar
Baidya, R., et al. 2019 Simultaneous skin friction and velocity measurements in high Reynolds number pipe and boundary layer flows. J. Fluid Mech. 871, 377400.CrossRefGoogle Scholar
Baidya, R., Philip, J., Hutchins, N., Monty, J.P. & Marusic, I. 2017 Distance-from-the-wall scaling of turbulent motions in wall-bounded flows. Phys. Fluids 29 (2), 020712.CrossRefGoogle Scholar
Bailey, S.C.C. & Smits, A.J. 2010 Experimental investigation of the structure of large- and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 651, 339356.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J.K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.CrossRefGoogle Scholar
Balakumar, B.J. & Adrian, R.J. 2007 Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A 365, 665681.Google ScholarPubMed
Baltzer, J.R., Adrian, R.J. & Wu, X.H. 2013 Structural organization of large and very large scales in turbulent pipe flow simulation. J. Fluid Mech. 720, 236279.CrossRefGoogle Scholar
Bandyopadhyay, P. 1980 Large structure with a characteristic upstream interface in turbulent boundary layers. Phys. Fluids 23 (11), 2326.CrossRefGoogle Scholar
Bandyopadhyay, P. & Hussain, A.K.M.F. 1984 The coupling between scales in shear flows. Phys. Fluids 27 (9), 2221.CrossRefGoogle Scholar
Berk, T. & Coletti, F. 2020 Transport of inertial particles in high-Reynolds-number turbulent boundary layers. J. Fluid Mech. 903, A18.CrossRefGoogle Scholar
Bernardini, M. 2014 Reynolds number scaling of inertial particle statistics in turbulent channel flows. J. Fluid Mech. 758, R1.CrossRefGoogle Scholar
Bernardini, M. & Pirozzoli, S. 2011 Inner/outer layer interactions in turbulent boundary layers: a refined measure for the large-scale amplitude modulation mechanism. Phys. Fluids 23 (6), 061701.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2013 The effect of large-scale turbulent structures on particle dispersion in wall-bounded flows. Intl J. Multiphase Flow 51, 5564.CrossRefGoogle Scholar
Brandt, L. & Coletti, F. 2022 Particle-laden turbulence: progress and perspectives. Annu. Rev. Fluid Mech. 54 (1), 159189.CrossRefGoogle Scholar
Brown, G.L. & Thomas, A.S. 1977 Large structure in a turbulent boundary layer. Phys. Fluids 20 (10), S243S252.CrossRefGoogle Scholar
Carper, M.A. & Porté-Agel, F. 2004 The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J. Turbul. 5, N40.CrossRefGoogle Scholar
Chauhan, K., Hutchins, N., Monty, J. & Marusic, I. 2013 Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorol. 147 (1), 4150.CrossRefGoogle Scholar
Chowdhuri, S. & Prabha, T.V. 2019 An evaluation of the dissimilarity in heat and momentum transport through quadrant analysis for an unstable atmospheric surface layer flow. Environ. Fluid Mech. 19 (2), 513542.CrossRefGoogle Scholar
Chowdhuri, S., Todekar, K. & Prabha, T.V. 2021 The characterization of turbulent heat and moisture transport during a gust-front event over the Indian peninsula. Environ. Fluid Mech. 21 (4), 907924.CrossRefGoogle Scholar
Christensen, K.T. & Adrian, R.J. 2001 Statistical evidence of hairpin vortex packets in wall turbulence. J. Fluid Mech. 431, 433443.CrossRefGoogle Scholar
Chung, D. & McKeon, B.J. 2010 Large-eddy simulation of large-scale structures in long channel flow. J. Fluid Mech. 661, 341364.CrossRefGoogle Scholar
Cui, G., Ruhman, I. & Jacobi, I. 2022 Spatial detection and hierarchy analysis of large-scale particle clusters in wall-bounded turbulence. J. Fluid Mech. 942, A52.CrossRefGoogle Scholar
Del Álamo, J.C. & Jiménez, J. 2009 Estimation of turbulent convection velocities and corrections to Taylor's approximation. J. Fluid Mech. 640, 526.CrossRefGoogle Scholar
Dennis, D.J.C. 2015 Coherent structures in wall-bounded turbulence. An. Acad. Bras. Ciênc. 87 (2), 11611193.CrossRefGoogle ScholarPubMed
Dennis, D.J.C. & Nickels, T.B. 2011 Experimental measurement of large-scale three-dimensional structures in a turbulent boundary layer. Part 2. Long structures. J. Fluid Mech. 673, 218244.CrossRefGoogle Scholar
Dharmarathne, S., Tutkun, M., Araya, G. & Castillo, L. 2016 Structures of scalar transport in a turbulent channel. Eur. J. Mech. (B/ Fluids) 55, 259271.CrossRefGoogle Scholar
Dogan, E., Hearst, R.J. & Ganapathisubramani, B. 2017 Modelling high Reynolds number wall-turbulence interactions in laboratory experiments using large-scale free-stream turbulence. Phil. Trans. R. Soc. A 375 (2089), 20160091.CrossRefGoogle ScholarPubMed
Dong, Z.B., Lv, P., Zhang, Z.C., Qian, G.Q. & Luo, W.Y. 2012 Aeolian transport in the field: a comparison of the effects of different surface treatments. J. Geophys. Res. Atmos. 117 (D9), D09210.CrossRefGoogle Scholar
Dupont, S., Bergametti, G., Marticorena, B. & Simoëns, S. 2013 Modeling saltation intermittency. J. Geophys. Res. Atmos. 118 (13), 71097128.CrossRefGoogle Scholar
Eaton, J.K. & Fessler, J.R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Emes, M.J., Arjomandi, M., Kelso, R.M. & Ghanadi, F. 2019 Turbulence length scales in a low-roughness near-neutral atmospheric surface layer. J. Turbul. 20 (9), 545562.CrossRefGoogle Scholar
Favre, A., Gaviglio, J. & Dumas, R.J. 1957 Space-time double correlations and spectra in a turbulent boundary layer. J. Fluid Mech. 2, 313342.CrossRefGoogle Scholar
Favre, A., Gaviglio, J. & Dumas, R.J. 1958 Further space-time correlations of velocity in a turbulent boundary layer. J. Fluid Mech. 3, 344356.CrossRefGoogle Scholar
Favre, A., Gaviglio, J. & Dumas, R.J. 1967 Structure of velocity space-time correlations in a boundary layer. Phys. Fluids 10, S138S145.CrossRefGoogle Scholar
Foken, T., Gockede, M., Mauder, M., Mahrt, L., Amiro, B. & Munger, W. 2004 Post-field data quality control. In Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis (ed. X. Lee, W. Massman & B. Law), pp. 181–208. Kluwer Academic.CrossRefGoogle Scholar
Ganapathisubramani, B., Hutchins, N., Hambleton, W.T., Longmire, E.K. & Marusic, I. 2005 Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J. Fluid Mech. 524, 5780.CrossRefGoogle Scholar
Ganapathisubramani, B., Longmire, E.K. & Marusic, I. 2003 Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 3546.CrossRefGoogle Scholar
Grant, H.L. 1958 The large eddies of turbulent motion. J. Fluid Mech. 4 (2), 149190.CrossRefGoogle Scholar
Guala, M., Hommema, S.E. & Adrian, R.J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521.CrossRefGoogle Scholar
Guala, M., Metzger, M. & McKeon, B.J. 2010 Intermittency in the atmospheric surface layer: unresolved or slowly varying? Phys. D: Nonlinear Phenom. 239 (14), 12511257.CrossRefGoogle Scholar
Guala, M., Metzger, M. & McKeon, B.J. 2011 Interactions within the turbulent boundary layer at high Reynolds number. J. Fluid Mech. 666, 573604.CrossRefGoogle Scholar
Heisel, M., de Silva, C.M., Katul, G.G. & Chamecki, M. 2022 Self-similar geometries within the inertial subrange of scales in boundary layer turbulence. J. Fluid Mech. 942, A33.CrossRefGoogle Scholar
Högström, U. 1988 Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol. 42, 5578.CrossRefGoogle Scholar
Högström, U., Hunt, J.C.R. & Smedman, A.S. 2002 Theory and measurements for turbulence spectra and variances in the atmospheric neutral surface layer. Boundary-Layer Meteorol. 103 (1), 101124.CrossRefGoogle Scholar
Hristov, T., Friehe, C. & Miller, S. 1998 Wave-coherent fields in air flow over ocean waves: identification of cooperative behavior buried in turbulence. Phys. Rev. Lett. 81 (23), 52455248.CrossRefGoogle Scholar
Huang, N.E., Shen, Z. & Long, S.R. 1999 A new view of nonlinear water waves: the Hilbert spectrum. Annu. Rev. Fluid Mech. 31 (1), 417457.CrossRefGoogle Scholar
Hutchins, N., Chauhan, K., Marusic, I., Monty, J. & Klewicki, J. 2012 Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol. 145 (2), 273306.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365, 647664.Google ScholarPubMed
Ishizuka, M., Mikami, M., Leys, J., Yamada, Y., Heidenreich, S., Shao, Y. & McTainsh, G.H. 2008 Effects of soil moisture and dried raindroplet crust on saltation and dust emission. J. Geophys. Res. 113 (D24), D24212.Google Scholar
Jacob, C. & Anderson, W. 2017 Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: insights for aeolian processes. Boundary-Layer Meteorol. 162 (1), 2141.CrossRefGoogle Scholar
Jacobi, I., Chung, D., Duvvuri, S. & McKeon, B.J. 2021 Interactions between scales in wall turbulence: phase relationships, amplitude modulation and the importance of critical layers. J. Fluid Mech. 914, A7.CrossRefGoogle Scholar
Jacobi, I. & McKeon, B.J. 2013 Phase relationships between large and small scales in the turbulent boundary layer. Exp. Fluids 54 (3), 1481.CrossRefGoogle Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1998 The effect of particles on wall turbulence. Intl J. Multiphase Flow 24 (3), 359386.CrossRefGoogle Scholar
Kiger, K.T. & Pan, C. 2002 Suspension and turbulence modification effects of solid particulates on a horizontal turbulent channel flow. J. Turbul. 3, N19.CrossRefGoogle Scholar
Kim, K.C. & Adrian, R.J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.CrossRefGoogle Scholar
Kovasznay, L., Kibens, V. & Blackwelder, R.F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41, 283325.CrossRefGoogle Scholar
Krug, D., Baars, W.J., Hutchins, N. & Marusic, I. 2019 Vertical coherence of turbulence in the atmospheric surface layer: connecting the hypotheses of Townsend and Davenport. Boundary-Layer Meteorol. 172 (2), 199214.CrossRefGoogle Scholar
Kunkel, G. & Marusic, I. 2006 Study of the near-wall-turbulent region of the high-Reynolds-number boundary layer using an atmospheric flow. J. Fluid Mech. 548, 375402.CrossRefGoogle Scholar
Lenschow, D.H., Mann, J. & Kristensen, L. 1994 How long is long enough when measuring fluxes and other turbulence statistics? J. Atmos. Ocean. Technol. 11 (3), 661673.2.0.CO;2>CrossRefGoogle Scholar
Lenschow, D.H. & Stankov, B.B. 1986 Length scales in the convective boundary layer. J. Atmos. Sci. 43 (12), 11981209.2.0.CO;2>CrossRefGoogle Scholar
Li, M., de Silva, C.M., Chung, D., Pullin, D.I., Marusic, I. & Hutchins, N. 2021 b Experimental study of a turbulent boundary layer with a rough-to-smooth change in surface conditions at high Reynolds numbers. J. Fluid Mech. 923, A18.CrossRefGoogle Scholar
Li, X., Hutchins, N., Zheng, X., Marusic, I. & Baars, W. 2022 Scale-dependent inclination angle of turbulent structures in stratified atmospheric surface layers. J. Fluid Mech. 942, A38.CrossRefGoogle Scholar
Li, C., Lim, K., Berk, T., Abraham, A., Heisel, M., Guala, M., Coletti, F. & Hong, J. 2021 a Settling and clustering of snow particles in atmospheric turbulence. J. Fluid Mech. 912, A49.CrossRefGoogle Scholar
Li, B. & McKenna Neuman, C. 2012 Boundary-layer turbulence characteristics during aeolian saltation. Geophys. Res. Lett. 39 (11), L11402.CrossRefGoogle Scholar
Ligrani, P.M. & Moffat, R.J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Liu, H., Bo, T. & Liang, Y. 2017 The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys. Fluids 29 (3), 035104.CrossRefGoogle Scholar
Liu, H., He, X. & Zheng, X. 2021 An investigation of particles effects on wall-normal velocity fluctuations in sand-laden atmospheric surface layer flows. Phys. Fluids 33 (10), 103309.CrossRefGoogle Scholar
Liu, H., He, X. & Zheng, X. 2023 Amplitude modulation in particle-laden atmospheric surface layers. J. Fluid Mech. 957, A14.CrossRefGoogle Scholar
Liu, H., Wang, G. & Zheng, X. 2019 Amplitude modulation between multi-scale turbulent motions in high-Reynolds-number atmospheric surface layers. J. Fluid Mech. 861, 585607.CrossRefGoogle Scholar
Liu, H. & Zheng, X. 2021 Large-scale structures of wall-bounded turbulence in single- and two-phase flows: advancing understanding of the atmospheric surface layer during sandstorms. Flow 1, E5.CrossRefGoogle Scholar
Luhar, M., Sharma, A. & McKeon, B.J. 2014 On the structure and origin of pressure fluctuations in wall turbulence: predictions based on the resolvent analysis. J. Fluid Mech. 751, 3870.CrossRefGoogle Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.CrossRefGoogle Scholar
Marusic, I., Baars, W.J. & Hutchins, N. 2017 Scaling of the streamwise turbulence intensity in the context of inner–outer interactions in wall turbulence. Phys. Rev. Fluids 2 (10), 100502.CrossRefGoogle Scholar
Marusic, I. & Heuer, W.D.C. 2007 Reynolds number invariance of the structure inclination angle in wall turbulence. Phys. Rev. Lett. 99 (11), 114504.CrossRefGoogle ScholarPubMed
Marusic, I., McKeon, B.J., Monkewitz, P.A., Nagib, H.M., Smits, A.J. & Sreenivasan, K.R. 2010 Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.CrossRefGoogle Scholar
Mathis, R., Hutchins, N. & Marusic, I. 2009 a Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers. J. Fluid Mech. 628, 311337.CrossRefGoogle Scholar
Mathis, R., Marusic, I., Hutchins, N. & Sreenivasan, K.R. 2011 The relationship between the velocity skewness and the amplitude modulation of the small scale by the large scale in turbulent boundary layers. Phys. Fluids 23 (12), 121702.CrossRefGoogle Scholar
Mathis, R., Monty, J.P., Hutchins, N. & Marusic, I. 2009 b Comparison of large-scale amplitude modulation in turbulent boundary layers, pipes, and channel flows. Phys. Fluids 21 (11), 111703.CrossRefGoogle Scholar
McGowan, H.A. & Clark, A. 2008 A vertical profile of PM10 dust concentrations measured during a regional dust event identified by MODIS Terra, western Queensland, Australia. J. Geophys. Res. 113 (F2), F02S03.Google Scholar
McLaughlin, J.B. 1989 Aerosol particle deposition in numerically simulated channel flow. Phys. Fluids A 1 (7), 12111224.CrossRefGoogle Scholar
Metzger, M., McKeon, B.J. & Holmes, H. 2007 The near-neutral atmospheric surface layer: turbulence and non-stationarity. Phil. Trans. R. Soc. Lond. A 365, 859876.Google ScholarPubMed
Mikami, M. 2005 Measurement of saltation process over gobi and sand dunes in the Taklimakan desert, China, with newly developed sand particle counter. J. Geophys. Res. 110 (D18), D18S02.Google Scholar
Monty, J.P., Stewaet, J.A., Williams, R.C. & Chong, M.S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.CrossRefGoogle Scholar
Morris, S.C., Stolpa, S.R., Slaboch, P.E. & Klewicki, J.C. 2007 Near-surface particle image velocimetry measurements in a transitionally rough-wall atmospheric boundary layer. J. Fluid Mech. 580, 319338.CrossRefGoogle Scholar
Motoori, Y., Wong, C. & Goto, S. 2022 Role of the hierarchy of coherent structures in the transport of heavy small particles in turbulent channel flow. J. Fluid Mech. 942, A3.CrossRefGoogle Scholar
Pathikonda, G. & Christensen, K.T. 2017 Inner–outer interactions in a turbulent boundary layer overlying complex roughness. Phys. Rev. Fluids 2 (4), 044603.CrossRefGoogle Scholar
Perry, A.E., Henbest, S. & Chong, M.S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Picano, F., Sardina, G. & Casciola, C.M. 2009 Spatial development of particle-laden turbulent pipe flow. Phys. Fluids 21 (9), 093305.CrossRefGoogle Scholar
Pirozzoli, S., Romero, J., Fatica, M., Verzicco, R. & Orlandi, P. 2022 DNS of passive scalars in turbulent pipe flow. J. Fluid Mech. 940, A45.CrossRefGoogle Scholar
Puccioni, M., Calaf, M., Pardyjak, E.R., Hoch, S., Morrison, T.J., Perelet, A. & Iungo, G.V. 2023 Identification of the energy contributions associated with wall-attached eddies and very-large-scale motions in the near-neutral atmospheric surface layer through wind LiDAR measurements. J. Fluid Mech. 955, A39.CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Rodgers, J.L. & Nicewander, W.A. 1988 Thirteen ways to look at the correlation coefficient. Am. Stat. 42 (1), 5966.CrossRefGoogle Scholar
Rouson, D.W.I. & Eaton, J.K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Salesky, S.T. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.CrossRefGoogle Scholar
Samie, M., Baars, W.J., Rouhi, A., Schlatter, P., Örlü, R., Marusic, I. & Hutchins, N. 2020 Near wall coherence in wall-bounded flows and implications for flow control. Intl J. Heat Fluid Flow 86, 108683.CrossRefGoogle Scholar
Schlatter, P. & Örlü, R. 2010 Quantifying the interaction between large and small scales in wall-bounded turbulent flows: a note of caution. Phys. Fluids 22 (5), 051704.CrossRefGoogle Scholar
Shao, Y.P. 2008 Physics and Modelling of Wind Erosion, 2nd edn. Springer.Google Scholar
Shao, Y.P. & Mikami, M. 2005 Heterogeneous saltation: theory, observation and comparison. Boundary-Layer Meteorol. 115 (3), 359379.CrossRefGoogle Scholar
Spark, E.H. & Dutton, J.A. 1972 Phase angle considerations in the modeling of intermittent turbulence. J. Atmos. Sci. 29 (2), 300303.2.0.CO;2>CrossRefGoogle Scholar
Squire, D.T., Baars, W.J., Hutchins, N. & Marusic, I. 2016 Inner–outer interactions in rough-wall turbulence. J. Turbul. 17 (12), 11591178.CrossRefGoogle Scholar
Sreenivasan, K.R., Chambers, A.J. & Antonia, R.A. 1978 Accuracy of moments of velocity and scalar fluctuations in the atmospheric surface layer. Boundary-Layer Meteorol. 14 (3), 341359.CrossRefGoogle Scholar
Talluru, K.M., Baidya, R., Hutchins, N. & Marusic, I. 2014 Amplitude modulation of all three velocity components in turbulent boundary layers. J. Fluid Mech. 746, R1.CrossRefGoogle Scholar
Talluru, K.M., Philip, J. & Chauhan, K.A. 2018 Local transport of passive scalar released from a point source in a turbulent boundary layer. J. Fluid Mech. 846, 292317.CrossRefGoogle Scholar
Tardu, S.F. 2011 Statistical Approach to Wall Turbulence. John Wiley & Sons, Ltd.CrossRefGoogle Scholar
Tay, G.F.K., Kuhn, D.C.S. & Tachie, M.F. 2015 Effects of sedimenting particles on the turbulence structure in a horizontal channel flow. Phys. Fluids 27 (2), 025106.CrossRefGoogle Scholar
Tomkins, C.D. & Adrian, R.J. 2003 Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 3774.CrossRefGoogle Scholar
Townsend, A.A. 1958 The turbulent boundary layer. In Grenzschichtforschung / Boundary Layer Research (ed. H. Görtler), pp. 1–15. Springer.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.Google Scholar
Tracy, C.R., Welch, W.R. & Porter, W.P. 1980 Properties of Air: A Manual for Use in Biophysical Ecology, 3rd edn. The University of Wisconsin.Google Scholar
Tsuji, Y., Marusic, I. & Johansson, A.V. 2016 Amplitude modulation of pressure in turbulent boundary layer. Intl J. Heat Fluid Flow 61, 211.CrossRefGoogle Scholar
Tutkun, M., George, W.K., Delville, J., Stanislas, M., Johansson, P.B.V., Foucaut, J.-M. & Coudert, S. 2009 Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J. Turbul. 10, N21.CrossRefGoogle Scholar
Vallikivi, M., Ganapathisubramani, B. & Smits, A.J. 2015 Spectral scaling in boundary layers and pipes at very high Reynolds numbers. J. Fluid Mech. 771, 303326.CrossRefGoogle Scholar
Wallace, J.M. 2016 Quadrant analysis in turbulence research: history and evolution. Annu. Rev. Fluid Mech. 48 (1), 131158.CrossRefGoogle Scholar
Wang, P., Feng, S., Zheng, X. & Sung, H. 2019 The scale characteristics and formation mechanism of aeolian sand streamers based on large eddy simulation. J. Geophys. Res. Atmos. 124 (21), 1137211388.CrossRefGoogle Scholar
Wang, G., Gu, H. & Zheng, X. 2020 Large scale structures of turbulent flows in the atmospheric surface layer with and without sand. Phys. Fluids 32 (10), 106604.CrossRefGoogle Scholar
Wang, G. & Richter, D. 2020 Multiscale interaction of inertial particles with turbulent motions in open channel flow. Phys. Rev. Fluids 5 (4), 044307.CrossRefGoogle Scholar
Wang, L.P. & Stock, D.E. 1993 Dispersion of heavy particles by turbulent motion. J. Atmos. Sci. 50 (13), 18971913.2.0.CO;2>CrossRefGoogle Scholar
Wang, G. & Zheng, X. 2016 Very large scale motions in the atmospheric surface layer: a field investigation. J. Fluid Mech. 802, 464489.CrossRefGoogle Scholar
Wang, G., Zheng, X. & Tao, J. 2017 Very large scale motions and PM10 concentration in a high-$Re$ boundary layer. Phys. Fluids 29 (6), 061701.CrossRefGoogle Scholar
Wilczak, J.M., Oncley, S.P. & Stage, S.A. 2001 Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol. 99 (1), 127150.CrossRefGoogle Scholar
Wu, Z. 2003 Geomorphology of Wind-drift Sands and Their Controlled Engineering. Science Press.Google Scholar
Wu, Y. & Christensen, K.T. 2010 Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380418.CrossRefGoogle Scholar
Zhang, Y., Hu, R. & Zheng, X. 2018 Large-scale coherent structures of suspended dust concentration in the neutral atmospheric surface layer: a large-eddy simulation study. Phys. Fluids 30 (4), 046601.CrossRefGoogle Scholar
Zhang, W., Wang, Y. & Lee, S.J. 2008 Simultaneous PIV and PTV measurements of wind and sand particle velocities. Exp. Fluids 45 (2), 241256.CrossRefGoogle Scholar
Zheng, X. 2009 Mechanics of Wind-blown Sand Movements, 1st edn. Springer.CrossRefGoogle Scholar
Zhou, J., Adrian, R.J., Balachandar, S. & Kendall, T.M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar