Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T01:48:37.216Z Has data issue: false hasContentIssue false

The effect of Stokes number on particle velocity and concentration distributions in a well-characterised, turbulent, co-flowing two-phase jet

Published online by Cambridge University Press:  09 November 2016

Timothy C. W. Lau*
Affiliation:
Centre for Energy Technology, School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia
Graham J. Nathan
Affiliation:
Centre for Energy Technology, School of Mechanical Engineering, The University of Adelaide, SA 5005, Australia
*
Email address for correspondence: [email protected]

Abstract

Simultaneous measurements of particle velocity and concentration (number density) in a series of mono-disperse, two-phase turbulent jets issuing from a long, round pipe into a low velocity co-flow were performed using planar nephelometry and digital particle image velocimetry. The exit Stokes number, $Sk_{D}$, was systematically varied over two orders of magnitude between 0.3 and 22.4, while the Reynolds number was maintained in the turbulent regime ($10\,000\leqslant Re_{D}\leqslant 40\,000$). The mass loading was fixed at $\unicode[STIX]{x1D719}=0.4$, resulting in a flow that is in the two-way coupling regime. The results show that, in contrast to all previous work where a single Stokes number has been used to characterise fluid–particle interactions, the characteristic Stokes number in the axial direction is lower than that for the radial direction. This is attributed to the significantly greater length scales in the axial motions than in the radial ones. It further leads to a preferential response of particles to gas-phase axial velocity fluctuations, $u_{p}^{\prime }$, over radial velocity fluctuations, $v_{p}^{\prime }$. This, in turn, leads to high levels of anisotropy in the particle-phase velocity fluctuations, $u_{p}^{\prime }/v_{p}^{\prime }>1$, throughout the jet, with $u_{p}^{\prime }/v_{p}^{\prime }$ increasing as $Sk_{D}$ is increased. The results also show that the region within the first few diameters of the exit plane is characterised by a process of particle reorganisation, resulting in significant particle migration to the jet axis for $Sk_{D}\leqslant 2.8$ and away from the axis for $Sk_{D}\geqslant 5.6$. This migration, together with particle deceleration along the axis, causes local humps in the centreline concentration whose value can even exceed those at the exit plane.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Ball, C. G., Fellouah, H. & Pollard, A. 2012 The flow field in turbulent round free jets. Prog. Aerosp. Sci. 50, 126.CrossRefGoogle Scholar
Boguslawski, L. & Popiel, Cz. O. 1979 Flow structure of the free round turbulent jet in the initial region. J. Fluid Mech. 90, 531539.CrossRefGoogle Scholar
Cheong, M., Birzer, C. & Lau, T. 2015 Laser attenuation correction for planar nephelometry concentration measurements. Exp. Techniques 40 (3), 1075.CrossRefGoogle Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Crowe, C. T., Troutt, T. R. & Chung, J. N. 1996 Numerical models for two-phase turbulent flows. Annu. Rev. Fluid Mech. 28, 1143.CrossRefGoogle Scholar
Davidson, M. J. & Wang, H. J. 2002 Strongly advected jet in a coflow. ASCE J. Hydraul. Eng. 128, 742752.CrossRefGoogle Scholar
Eaton, J. K. & Fessler, J. R. 1994 Preferential concentration of particles by turbulence. Intl J. Multiphase Flow 20, 169209.CrossRefGoogle Scholar
Eggels, J. G., Unger, F., Weiss, M. H., Westerweel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.CrossRefGoogle Scholar
Elghobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In Proc. of the IUTAM Symp. on Computational Multiphase Flow.Google Scholar
Fairweather, M. & Hurn, J.-P. 2008 Validation of an anisotropic model of turbulent flows contaning dispersed solid particles applied to gas-solid jets. Comput. Chem. Engng 32, 590599.CrossRefGoogle Scholar
Fan, J., Luo, K., Ha, M. Y. & Cen, K. 2004 Direct numerical simulation of a near-field particle-laden turbulent jet. Phys. Rev. E 70, 026303.Google ScholarPubMed
Fan, J., Zhang, X., Chen, L. & Chen, K. 1997 New stochastic particle dispersion modeling of a turbulent particle-laden round jet. Chem. Engng J. 66, 207215.CrossRefGoogle Scholar
Fellouah, H., Ball, C. G. & Pollard, A. 2009 Reynolds number effects within the development region of a turbulent round free jet. Intl J. Heat Mass Transfer 52, 39433954.CrossRefGoogle Scholar
Ferrand, V., Bazile, R. & Borée, J. 2001 Measurements of concentration per size class in a dense polydispersed jet using planar laser-induced fluorescence and phase Doppler techniques. Exp. Fluids 31, 597607.CrossRefGoogle Scholar
Fessler, J. R., Kulick, J. D. & Eaton, J. K. 1994 Preferential concentration of heavy particles in a turbulent channel flow. Phys. Fluids 6, 37423749.CrossRefGoogle Scholar
Fleckhaus, D., Hishida, K. & Maeda, M. 1987 Effect of laden solid particles on the turbulent flow structure of a round free jet. Exp. Fluids 5, 323333.CrossRefGoogle Scholar
Frishman, F., Hussainov, M., Kartushinsky, A. & Rudi, U. 1999 Distribution characteristics of the mass concentration of coarse solid particles in a two-phase turbulent jet. J. Aero. Sci. 30, 5169.CrossRefGoogle Scholar
Gillandt, I., Fritsching, U. & Bauckhage, K. 2001 Measurement of phase interaction in dispersed gas/particle two-phase flow. Intl J. Multiphase Flow 27, 13131332.CrossRefGoogle Scholar
Han, D. & Mungal, M. G. 2001 Direct measurement of entrainment in reaction/nonreacting turbulent jets. Combust. Flame 124, 370386.CrossRefGoogle Scholar
Hardalupas, Y., Taylor, A. M. K. P. & Whitelaw, J. H. 1989 Velocity and particle-flux characteristics of turbulent particle-laden jets. Proc. R. Soc. Lond. A 426, 3178.Google Scholar
Hetsroni, G. 1989 Particles-turbulence interaction. Intl J. Multiphase Flow 15, 735746.CrossRefGoogle Scholar
Hill, B. J. 1972 Measurement of local entrainment rate in the initial region of axisymmetric turbulent jets. J. Fluid Mech. 51, 773779.CrossRefGoogle Scholar
Kalt, P. A. M. & Nathan, G. J. 2007 Corrections to facilitate planar imaging of particle concentration in particle-laden flows using Mie scattering. Part 2: diverging laser sheets. Appl. Opt. 46, 72277236.CrossRefGoogle ScholarPubMed
Lau, T. C. W. & Nathan, G. J. 2014 The influence of Stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757, 432457.CrossRefGoogle Scholar
Lau, T. C. W. & Nathan, G. J. 2017 A method for identifying and characterising particle clusters in a two-phase turbulent jet. Intl J. Multiphase Flow 88, 191204.CrossRefGoogle Scholar
Laufer, J.1954 The structure of turbulence in fully developed pipe flow. NACA Tech. Rep. Technical 1174.Google Scholar
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537566.CrossRefGoogle Scholar
Levy, Y. & Lockwood, F. C. 1981 Velocity measurements in a particle laden turbulent free jet. Combust. Flame 40, 333339.CrossRefGoogle Scholar
Liepmann, D. & Gharib, M. 1992 The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643668.CrossRefGoogle Scholar
Loth, E. 2000 Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog. Energy Combust. Sci. 26, 161223.CrossRefGoogle Scholar
Mashayek, F. & Pandya, R. V. R. 2003 Analytical description of particle/droplet-laden turbulent flows. Prog. Energy Combust. Sci. 29, 329378.CrossRefGoogle Scholar
Mi, J., Nobes, D. S. & Nathan, G. J. 2001 Influence of jet exit conditions on the passive scalar field of an axisymmetric free jet. J. Fluid Mech. 432, 91125.CrossRefGoogle Scholar
Modarress, D., Tan, H. & Elghobashi, S. 1984a Two-component LDA measurement in a two-phase turbulent jet. AIAA J. 22, 624630.CrossRefGoogle Scholar
Modarress, D., Wuerer, J. & Elghobashi, S. 1984b An experimental study of a turbulent round two-phase jet. Chem. Engng Commun. 28, 341354.CrossRefGoogle Scholar
Monchaux, R., Bourgoin, M. & Cartellier, A. 2012 Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow 40, 118.CrossRefGoogle Scholar
Mostafa, A. A., Mongia, H. C., McDonell, V. G. & Samuelsen, G. S. 1989 Evolution of particle-laden jet flows: a theoretical and experimental study. AIAA J. 27, 167183.CrossRefGoogle Scholar
Mullyadzhanov, R., Abdurakipov, S. & Hanjalić, K. 2016 Helical structures in the near field of a turbulent pipe jet. Flow Turbul. Combust. Available at doi:10.1007/s10494-016-9753-2.Google Scholar
Nathan, G. J., Mi, J., Alwahabi, Z. T., Newbold, G. J. R. & Nobes, D. S. 2006 Impacts of a jet’s exit flow pattern on mixing and combustion performance. Prog. Energy Combust. Sci. 32, 496538.CrossRefGoogle Scholar
Nickels, T. B. & Perry, A. E. 1996 An experimental and theoretical study of the turbulent coflowing jet. J. Fluid Mech. 309, 157182.CrossRefGoogle Scholar
Panchapakesan, N. R. & Lumley, J. L. 1993 Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J. Fluid Mech. 246, 197223.CrossRefGoogle Scholar
Papadopoulos, G. & Pitts, W. M. 1998 Scaling the near-field centreline mixing behavior of axisymmetric turbulent jets. AIAA J. 36, 16351642.CrossRefGoogle Scholar
Picano, F., Sardina, G., Gualtieri, P. & Casciola, C. M. 2010 Anomalous memory effects on the transport of inertial particles in turbulent jets. Phys. Fluids 22, 051705.CrossRefGoogle Scholar
Pitts, W. M. 1991a Effects of global density ratio on the centreline mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11, 125134.CrossRefGoogle Scholar
Pitts, W. M. 1991b Reynolds number effects on the mixing behavior of axisymmetric turbulent jets. Exp. Fluids 11, 135141.CrossRefGoogle Scholar
Popper, J., Abuaf, N. & Hetsroni, G. 1974 Velocity measurements in a two-phase turbulent jet. Intl J. Multiphase Flow 1, 715726.CrossRefGoogle Scholar
Prevost, F., Boree, J., Nuglisch, H. J. & Charnay, G. 1996 Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet. Intl J. Multiphase Flow 22, 685701.CrossRefGoogle Scholar
Raffel, M., Willert, C., Wereley, S. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.CrossRefGoogle Scholar
Reeks, M. W. 1983 The transport of discrete particles in inhomogeneous turbulence. J. Aero. Sci. 14, 729739.CrossRefGoogle Scholar
Rouson, D. W. I. & Eaton, J. K. 2001 On the preferential concentration of solid particles in turbulent channel flow. J. Fluid Mech. 428, 149169.CrossRefGoogle Scholar
Saffman, P. G. 1965 The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385400.CrossRefGoogle Scholar
Sautet, J. C. & Stepowski, D. 1995 Dynamic behavior of variable-density, turbulent jets in their near development fields. Phys. Fluids 7, 27962806.CrossRefGoogle Scholar
Sheen, H. J., Jou, B. H. & Lee, Y. T. 1994 Effect of particle size on a two-phase turbulent jet. Exp. Therm. Fluid Sci. 8, 315327.CrossRefGoogle Scholar
Shuen, J. S., Solomon, A. S. P. & Zhang, Q. F. 1985 Structure of particle-laden jets: measurements and predictions. AIAA J. 23, 396404.CrossRefGoogle Scholar
Steinfeld, A. 2005 Solar thermochemical production of hydrogen – a review. Solar Energy 78, 603615.CrossRefGoogle Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Tso, J. & Hussain, F. 1989 Organized motions in a fully developed turbulent axisymmetric jet. J. Fluid Mech. 203, 425448.CrossRefGoogle Scholar
Tsuji, Y., Morikawa, Y., Tanaka, T., Karimine, K. & Nishida, S. 1988 Measurement of an axisymmetric jet laden with coarse particles. Intl J. Multiphase Flow 14, 565574.CrossRefGoogle Scholar
Wang, R., Law, A. W. & Adams, E. E. 2013 Large Eddy Simulation of starting and developed particle-laden jets. In Proc. of the 8th International Conf. on Multiphase Flow, Jeju, Korea.Google Scholar
Wells, M. R. & Stock, D. E. 1983 The effects of crossing trajectories on the dispersion of particles in a turbulent flow. J. Fluid Mech. 136, 3162.CrossRefGoogle Scholar
Xu, G. & Antonia, R. A. 2002 Effect of different initial conditions on a turbulent round free jet. Exp. Fluids 33, 677683.CrossRefGoogle Scholar
Yan, J., Luo, K., Fan, J., Tsuji, Y. & Cen, K. 2008 Direct numerical simulation of particle dispersion in a turbulent jet considering inter-particle collisions. Intl J. Multiphase Flow 34, 723733.CrossRefGoogle Scholar
Yoda, M., Hesselink, L. & Mungal, M. G. 1992 The evolution and nature of large-scale structures in the turbulent jet. Phys. Fluids A 4, 803811.CrossRefGoogle Scholar
Young, J. & Leeming, A. 1997 A theory of particle deposition in turbulent pipe flow. J. Fluid Mech. 340, 129159.CrossRefGoogle Scholar
Yudine, M. I. 1959 Physical considerations on heavy-particle diffusion. Adv. Geophys. 6, 185191.CrossRefGoogle Scholar
Yuu, S., Yasukouchi, N., Hirosawa, Y. & Jotaki, T. 1978 Particle turbulent diffusion in a dust laden round jet. AIChE J. 24, 509519.CrossRefGoogle Scholar