Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:01:32.719Z Has data issue: false hasContentIssue false

The effect of seam imperfections on the unsteady flow within a fluid-filled torus

Published online by Cambridge University Press:  12 February 2015

Sophie A. W. Calabretto
Affiliation:
Department of Engineering Science, The University of Auckland, Auckland 1142, New Zealand
Trent W. Mattner
Affiliation:
School of Mathematical Sciences, The University of Adelaide, Adelaide 5005, Australia
James P. Denier*
Affiliation:
Department of Engineering Science, The University of Auckland, Auckland 1142, New Zealand
*
Email address for correspondence: [email protected]

Abstract

We consider the behaviour of the flow within a fluid-filled torus when there is a sudden change in the rotation rate of the torus. Experimental work on this problem by Madden & Mullin (J. Fluid Mech., vol. 265, 1994, p. 217) demonstrated a flow with a rich and complex dynamics. In particular, planar (top-down) flow visualisation images show a well-defined laminar band at both the inner and outer bend of the toroidal pipe. Hewitt et al. (J. Fluid Mech., vol. 688, 2011, pp. 88–119) demonstrated the existence of finite-time singularities in the resulting viscous boundary layers, and linked the post-singularity structure to one of the laminar bands identified in experiments (Madden & Mullin J. Fluid Mech., vol. 265, 1994, p. 217; del Pino et al.Phys. Fluids, vol. 20 (12), 2008, 124104). The second band (or laminar front) identified by Madden & Mullin was conjectured by Hewitt et al. to be the result of a centrifugal instability, perhaps generated by small imperfections in the experimental apparatus. Here we explore this conjecture further, demonstrating that a small seam imperfection can generate substantial secondary motion but with considerably different dynamics than the centrifugally driven instability of Hewitt et al.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banks, W. H. H. & Zaturska, M. B. 1979 The collision of unsteady laminar boundary layers. J. Engng Maths 13 (3), 193212.CrossRefGoogle Scholar
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197, 759778.CrossRefGoogle Scholar
Boirin, O., Deplano, V. & Pelissier, R. 2006 Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid Mech. 574, 109129.CrossRefGoogle Scholar
Denier, J. P., Hall, P. & Seddougui, S. O. 1991 On the receptivity problem for Görtler vortices: vortex motions induced by wall roughness. Phil. Trans. R. Soc. Lond. 335 (1636), 5185.Google Scholar
Dennis, S. C. R. & Duck, P. W. 1988 Unsteady flow due to an impulsively started rotating sphere. Comput. Fluids 16 (3), 291310.CrossRefGoogle Scholar
Hall, P. 1990 Görtler vortices in growing boundary layers: the leading edge receptivity problem, linear growth and the nonlinear breakdown stage. Mathematika 37, 151189.CrossRefGoogle Scholar
Hewitt, R. E., Hazel, A. L., Clarke, R. J. & Denier, J. P. 2011 Unsteady flow in a rotating torus after a sudden change in rotation rate. J. Fluid Mech. 688, 88119.CrossRefGoogle Scholar
Kluwick, A. & Wohlfahrt, H. 1986 Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid Mech. 165, 335353.CrossRefGoogle Scholar
Madden, F. N. & Mullin, T. 1994 The spin-up from rest of a fluid-filled torus. J. Fluid Mech. 265, 217244.CrossRefGoogle Scholar
Mangalam, S. M., Dagenhart, J. R. & Meyers, J. F. 1985 The Görtler instability on an airfoil. AIAA Paper 85-0491.Google Scholar
Noskov, V., Stepanov, R., Denisov, S., Frick, P., Verhille, V., Pilhon, N. & Pinton, J.-F. 2009 Dynamics of a turbulent spin-down flow inside a torus. Phys. Fluids 21, 045108.CrossRefGoogle Scholar
Pedley, T. J. 2003 Mathematical modelling of arterial fluid dynamics. J. Engng Maths 47, 419444.CrossRefGoogle Scholar
del Pino, C., Hewitt, R. E., Clarke, R. J., Mullin, T. & Denier, J. P. 2008 Unsteady fronts in the spin-down of a fluid-filled torus. Phys. Fluids 20 (12), 124104.CrossRefGoogle Scholar
Riley, N. 1998 Unsteady fully-developed flow in a curved pipe. J. Engng Maths 34, 131141.CrossRefGoogle Scholar
Schrader, L., Brandt, L. & Zaki, T. A. 2011 Receptivity instability and breakdown of Görtler flow. J. Fluid Mech. 682, 362396.CrossRefGoogle Scholar
Stewartson, K., Cebeci, T. & Chang, K. C. 1980 A boundary-layer collision in a curved duct. Q. J. Mech. Appl. Maths 33 (1), 5975.CrossRefGoogle Scholar
Walbran, S. H., Cater, J. E. & Clarke, R. J. 2013 Cross-sectional flow measurements during spin-down of a rotating torus. In PIV2013: 10th International Symposium on Particle Image Velocimetry, Delft, The Netherlands.Google Scholar