Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:47:20.827Z Has data issue: false hasContentIssue false

Effect of initial interface orientation on patterns produced by vibrational forcing in microgravity

Published online by Cambridge University Press:  17 December 2019

P. Salgado Sánchez*
Affiliation:
Center for Computational Simulation, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040Madrid, Spain
Y. Gaponenko
Affiliation:
Microgravity Research Centre, CP-165/62, Université Libre de Bruxelles (ULB), av. F. D. Roosevelt 50, B-1050Brussels, Belgium
V. Yasnou
Affiliation:
Microgravity Research Centre, CP-165/62, Université Libre de Bruxelles (ULB), av. F. D. Roosevelt 50, B-1050Brussels, Belgium
A. Mialdun
Affiliation:
Microgravity Research Centre, CP-165/62, Université Libre de Bruxelles (ULB), av. F. D. Roosevelt 50, B-1050Brussels, Belgium
J. Porter
Affiliation:
Center for Computational Simulation, Escuela Técnica Superior de Ingeniería Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28040Madrid, Spain
V. Shevtsova
Affiliation:
Microgravity Research Centre, CP-165/62, Université Libre de Bruxelles (ULB), av. F. D. Roosevelt 50, B-1050Brussels, Belgium
*
Email address for correspondence: [email protected]

Abstract

When a container with two distinct fluids is subjected to vibrations in microgravity, the interface may undergo a variety of instabilities and develop towards a complex structure, as seen in recent parabolic flight experiments using both miscible and immiscible liquids. Among other things, the selected pattern depends on the frequency and amplitude of the forcing and, crucially, on its orientation with respect to the initial interface. In a parabolic flight experiment, this initial orientation is largely determined by the stage of the parabolic manoeuvre when the forcing is started and the residual gravity level during the period of microgravity. It plays a key role in the appearance of defects and irregularities during the evolution of the interface triggered by the frozen wave instability. Using numerical simulations, we systematically investigate the effect of initial interface orientation on pattern selection in microgravity for both miscible and immiscible fluids, and compare to available experiments. When the interface and the forcing are nearly aligned, the frozen wave instability is dominant, leading to the development of approximately regular columnar patterns. As the initial angle becomes more oblique, the frozen wave growth becomes more irregular and asymmetric and may involve thin auxiliary columns. Sufficiently large angles suppress the frozen wave instability and, depending on the container aspect ratio, may result in a simple two-column final state.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1954 Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80, 339358.CrossRefGoogle Scholar
Beyer, K., Gawriljuk, I., Günther, M., Lukovsky, I. & Timokha, A. 2001 Compressible potential flows with free boundaries. Part I. Vibrocapillary equilibria. Z. Angew. Math. Mech. 81 (4), 261271.3.0.CO;2-T>CrossRefGoogle Scholar
Beysens, D., Garrabos, Y., Chatain, D. & Evesque, P. 2009 Phase transition under forced vibrations in critical CO2. Europhys. Lett. 86 (1), 16003.CrossRefGoogle Scholar
Birikh, R. V. 1966 Thermocapillary convection in a horizontal layer of liquid. J. Appl. Mech. Tech. Phys. 7 (3), 4344.CrossRefGoogle Scholar
Codina, R. 1993 A discontinuity-capturing crosswind-dissipation for the finite element solution of the convection-diffusion equation. Comput. Meth. Appl. Mech. Engng 110 (3–4), 325342.CrossRefGoogle Scholar
Dore, B. D. 1973 On mass transport induced by interfacial oscillations at a single frequency. Math. Proc. Camb. Phil. Soc. 74 (2), 333347.CrossRefGoogle Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.CrossRefGoogle Scholar
Erlicher, S., Bonaventura, L. & Bursi, O. 2002 The analysis of the Generalized – 𝛼 methods for non-linear dynamic problems. method for non-linear dynamic problems. Comput. Mech. 28, 83104.CrossRefGoogle Scholar
Fernández, J., Salgado Sánchez, P., Tinao, I., Porter, J. & Ezquerro, J. M. 2017a The CFVib experiment: control of fluids in microgravity with vibrations. Microgravity Sci. Technol. 29 (5), 351364.CrossRefGoogle Scholar
Fernández, J., Tinao, I., Porter, J. & Laveron-Simavilla, A. 2017b Instabilities of vibroequilibria in rectangular containers. Phys. Fluids 29 (2), 024108.CrossRefGoogle Scholar
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T. & Beysens, D. 2014a Faraday instability in a near-critical fluid under weightlessness. Phys. Rev. E 89 (1), 013022.Google Scholar
Gandikota, G., Chatain, D., Amiroudine, S., Lyubimova, T. & Beysens, D. 2014b Frozen-wave instability in near-critical hydrogen subjected to horizontal vibration under various gravity fields. Phys. Rev. E 89 (1), 012309.Google Scholar
Gaponenko, Y. A., Mialdun, A. & Shevtsova, V. 2018 Pattern selection in miscible liquids under periodic excitation in microgravity: effect of interface width. Phys. Fluids 30 (6), 062103.CrossRefGoogle Scholar
Gaponenko, Y. A. & Shevtsova, V. 2016 Shape of the diffusive interface under periodic excitations at different gravity levels. Microgravity Sci. Technol. 28, 431439.CrossRefGoogle Scholar
Gaponenko, Y. A., Torregrosa, M. M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015a Dynamics of the interface between miscible liquids subjected to horizontal vibration. J. Fluid Mech. 784, 342372.CrossRefGoogle Scholar
Gaponenko, Y. A., Torregrosa, M. M., Yasnou, V., Mialdun, A. & Shevtsova, V. 2015b Interfacial pattern selection in miscible liquids under vibration. Soft Matt. 11 (42), 82218224.CrossRefGoogle Scholar
Gavrilyuk, I., Lukovsky, I. & Timokha, A. 2004 Two-dimensional variational vibroequilibria and Faraday’s drops. Z. Angew. Math. Phys. 55 (6), 10151033.CrossRefGoogle Scholar
Harari, I. & Hughes, T. J. R. 1992 What are C and h?: Inequalities for the analysis and design of finite element methods. Comput. Meth. Appl. Mech. Engng 97 (2), 157192.CrossRefGoogle Scholar
Jalikop, S. V. & Juel, A. 2012 Oscillatory transverse instability of interfacial waves in horizontally oscillating flows. Phys. Fluids 24, 044104.CrossRefGoogle Scholar
Kothe, D. B., Mjolsness, R. C. & Torrey, M. D.1991 RIPPLE: a computer program for incompressible flows with free surfaces. Tech. Rep. LA-12007-MS.CrossRefGoogle Scholar
Kull, H. J. 1991 Theory of the Rayleigh–Taylor instability. Phys. Rep. 206 (5), 197325.CrossRefGoogle Scholar
Lacaze, L., Guenoun, P., Beysens, D., Delsanti, M., Petitjeans, P. & Kurowski, P. 2010 Transient surface tension in miscible liquids. Phys. Rev. E 82 (4), 041606.Google ScholarPubMed
Lyubimov, D. V. & Cherepanov, A. A. 1986 Development of a steady relief at the interface of fluids in a vibrational field. Fluid Dyn. 21 (6), 849854.CrossRefGoogle Scholar
Lyubimov, D. V., Cherepanov, A. A., Lyubimova, T. P. & Roux, B. 1997 Interface orienting by vibration. C. R. Acad. Sci. Paris IIB 325 (7), 391396.Google Scholar
Lyubimova, T. P., Ivantsov, A. O., Garrabos, Y., Lecoutre, C., Gandikota, G. & Beysens, D. 2017 Band instability in near-critical fluids subjected to vibration under weightlessness. Phys. Rev. E 95 (1), 013105.Google ScholarPubMed
Mialdun, A., Yasnou, V., Shevtsova, V., Königer, A., Köhler, W., Alonso De Mezquia, D. & Bou-Ali, M. M. 2012 A comprehensive study of diffusion, thermodiffusion, and Soret coefficients of water-isopropanol mixtures. J. Chem. Phys. 136 (24), 244512.CrossRefGoogle ScholarPubMed
Miles, J. W. 1959 On the generation of surface waves by shear flows Part 3. Kelvin–Helmholtz instability. J. Fluid Mech. 6 (4), 583598.CrossRefGoogle Scholar
Olsson, E. & Kreiss, G. 2005 A conservative level set method for two phase flow. J. Comput. Phys. 210 (1), 225246.CrossRefGoogle Scholar
Pletser, V., Rouquette, S., Friedrich, U., Clervoy, J. F., Gharib, T., Gai, F. & Mora, C. 2016 The first european parabolic flight campaign with the Airbus A310 ZERO-G. Microgravity Sci. Technol. 28 (6), 587601.CrossRefGoogle Scholar
Salgado Sánchez, P., Gaponenko, Y., Porter, J. & Shevtsova, V. 2019a Finite-size effects on pattern selection in immiscible fluids subjected to horizontal vibrations in weightlessness. Phys. Rev. E 99, 042803.Google Scholar
Salgado Sánchez, P., Yasnou, V., Gaponenko, Y., Mialdun, A., Porter, J. & Shevtsova, V. 2019b Interfacial phenomena in immiscible liquids subjected to vibrations in microgravity. J. Fluid Mech. 865, 850883.CrossRefGoogle Scholar
Shevtsova, V., Gaponenko, Y. A., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2015 Wall-generated pattern on a periodically excited miscible liquid/liquid interface. Langmuir 31 (20), 55505553.CrossRefGoogle ScholarPubMed
Shevtsova, V., Gaponenko, Y. A., Yasnou, V., Mialdun, A. & Nepomnyashchy, A. 2016 Two-scale wave patterns on a periodically excited miscible liquid-liquid interface. J. Fluid Mech. 795, 409422.CrossRefGoogle Scholar
Someya, S. & Munakata, T. 2005 Measurement of the interface tension of immiscible liquids interface. J. Cryst. Growth 275 (1–2), 343348.CrossRefGoogle Scholar
Talib, E., Jalikop, S. V. & Juel, A. 2007 The influence of viscosity on the frozen wave stability: theory and experiment. J. Fluid Mech. 584, 4568.CrossRefGoogle Scholar
Wolf, G. H. 1969 The dynamic stabilization of the Rayleigh–Taylor instability and the corresponding dynamic equilibrium. Z. Phys. 227 (3), 291300.CrossRefGoogle Scholar