Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T14:38:00.411Z Has data issue: false hasContentIssue false

Effect of fluid inertial torque on the rotational and orientational dynamics of tiny spheroidal particles in turbulent channel flow

Published online by Cambridge University Press:  14 December 2023

Zhiwen Cui
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Jingran Qiu
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Xinyu Jiang
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
Lihao Zhao*
Affiliation:
AML, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, PR China
*
Email address for correspondence: [email protected]

Abstract

Rotation and orientation of non-spherical particles in a fluid flow depend on the hydrodynamic torque they experience. However, little is known about the effect of the fluid inertial torque on the dynamics of tiny inertial spheroids in turbulent channel flows, as only Jeffery torque has been considered in previous studies by point-particle direct numerical simulations. In this study, we investigate the rotation and orientation of tiny spheroids with both fluid inertial torque and Jeffery torque in a turbulent channel flow. By comparing with the case in the absence of fluid inertial torque, we find that the rotational and orientational dynamics of spheroids is significantly affected by the fluid inertial torque when the Stokes number, which is non-dimensionalized by fluid viscous time scale, is larger than the critical value $St_c\approx 2$, indicating that the fluid inertial torque is non-negligible for most particle cases considered in earlier studies. In contrast to the earlier findings considering only Jeffery torque (Challabotla et al., J. Fluid Mech., vol. 776, 2015, p. R2), we find that prolate (oblate) spheroids with a large Stokes number tend to tumble (spin) in the streamwise–wall-normal plane in a thinner region near the wall due to the presence of the fluid inertial torque. Approaching the channel centre, the flow shear gradually vanishes, but the velocity difference between local fluid and particles is still pronounced and increasing as particle inertia grows. As a result, in the core region, fluid inertial torque is dominant and drives the particles to align with its broad side normal to the streamwise direction rather than a random orientation observed in earlier studies without fluid inertial torque. Meanwhile, the presence of fluid inertial torque enhances the tumbling rates of spheroids in the core region. In addition, the effect of fluid inertial force on the dynamics of spheroids is also examined in this study, but the results indicate the effect of fluid inertial force is weak. Our findings imply the importance of fluid inertial torque in modelling the dynamics of inertial non-spherical particles in turbulent channel flows.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, P., Ray, S.S. & Subramanian, G. 2020 Orientation dynamics of sedimenting anisotropic particles in turbulence. Phys. Rev. Lett. 125 (3), 034501.Google Scholar
Andersson, H.I., Zhao, L. & Variano, E.A. 2015 On the anisotropic vorticity in turbulent channel flows. J. Fluids Engng 137 (8), 084503.CrossRefGoogle Scholar
Arcen, B., Ouchene, R., Khalij, M. & Tanière, A. 2017 Prolate spheroidal particles’ behavior in a vertical wall-bounded turbulent flow. Phys. Fluids 29 (9), 093301.CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.CrossRefGoogle Scholar
Assen, M.P.A., Ng, C.S., Will, J.B., Stevens, R.J.A.M., Lohse, D. & Verzicco, R. 2022 Strong alignment of prolate ellipsoids in Taylor–Couette flow. J. Fluid Mech. 935, A7.Google Scholar
Brenner, H. 1961 The Oseen resistance of a particle of arbitrary shape. J. Fluid Mech. 11 (4), 604610.Google Scholar
Brenner, H. 1963 The Stokes resistance of an arbitrary particle. Chem. Engng Sci. 18, 125.CrossRefGoogle Scholar
Brenner, H. 1964 The Stokes resistance of an arbitrary particle–IV. Arbitrary fields of flow. Chem. Engng Sci. 19 (10), 703727.Google Scholar
Brenner, H. & Cox, R.G. 1963 The resistance to a particle of arbitrary shape in translational motion at small Reynolds numbers. J. Fluid Mech. 17 (4), 561595.Google Scholar
Candelier, F., Mehaddi, R., Mehlig, B. & Magnaudet, J. 2023 Second-order inertial forces and torques on a sphere in a viscous steady linear flow. J. Fluid Mech. 954, A25.CrossRefGoogle Scholar
Candelier, F., Mehlig, B. & Magnaudet, J. 2019 Time-dependent lift and drag on a rigid body in a viscous steady linear flow. J. Fluid Mech. 864, 554595.CrossRefGoogle Scholar
Candelier, F., Qiu, J., Zhao, L., Voth, G. & Mehlig, B. 2022 Inertial torque on a squirmer. J. Fluid Mech. 953, R1.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 a Orientation and rotation of inertial disk particles in wall turbulence. J. Fluid Mech. 766, R2.CrossRefGoogle Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2015 b Shape effects on dynamics of inertia-free spheroids in wall turbulence. Phys. Fluids 27 (6), 061703.Google Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2016 a Gravity effects on fiber dynamics in wall turbulence. Flow Turbul. Combust. 97 (4), 10951110.Google Scholar
Challabotla, N.R., Zhao, L. & Andersson, H.I. 2016 b On fiber behavior in turbulent vertical channel flow. Chem. Engng Sci. 153, 7586.Google Scholar
Cui, H. & Grace, J.R. 2007 Fluidization of biomass particles: a review of experimental multiphase flow aspects. Chem. Engng Sci. 62 (1), 4555.Google Scholar
Cui, Y., Ravnik, J., Hriberšek, M. & Steinmann, P. 2020 a Towards a unified shear-induced lift model for prolate spheroidal particles moving in arbitrary non-uniform flow. Comput. Fluids 196, 104323.CrossRefGoogle Scholar
Cui, Y., Ravnik, J., Verhnjak, O., Hriberšek, M. & Steinmann, P. 2019 A novel model for the lift force acting on a prolate spheroidal particle in arbitrary non-uniform flow. Part 2. Lift force taking into account the non-streamwise flow shear. Intl J. Multiphase Flow 111, 232240.Google Scholar
Cui, Z., Dubey, A., Zhao, L. & Mehlig, B. 2020 b Alignment statistics of rods with the Lagrangian stretching direction in a channel flow. J. Fluid Mech. 901, A16.Google Scholar
Cui, Z., Huang, W.-X., Xu, C.-X., Andersson, H.I. & Zhao, L. 2021 Alignment of slender fibers and thin disks induced by coherent structures of wall turbulence. Intl J. Multiphase Flow 145, 103837.Google Scholar
Cui, Z. & Zhao, L. 2022 Shape-dependent regions for inertialess spheroids in turbulent channel flow. Phys. Fluids 34 (12), 123316.Google Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.CrossRefGoogle Scholar
Dabade, V., Marath, N.K. & Subramanian, G. 2016 The effect of inertia on the orientation dynamics of anisotropic particles in simple shear flow. J. Fluid Mech. 791, 631703.Google Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A.V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89 (1), 013006.Google Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J.-R. & Mehlig, B. 2015 Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27, 063301.CrossRefGoogle Scholar
Elgobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow (ed. S. Balachandar & A. Prosperetti), pp. 3–10. Springer.CrossRefGoogle Scholar
Eshghinejadfard, A., Hosseini, S.A. & Thévenin, D. 2017 Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study. AIP Adv. 7 (9), 095007.Google Scholar
Eshghinejadfard, A., Hosseini, S.A. & Thévenin, D. 2019 Effect of particle density in turbulent channel flows with resolved oblate spheroids. Comput. Fluids 184, 2939.Google Scholar
Eshghinejadfard, A., Zhao, L. & Thévenin, D. 2018 Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. J. Fluid Mech. 849, 510540.CrossRefGoogle Scholar
Fröhlich, K., Meinke, M. & Schröder, W. 2020 Correlations for inclined prolates based on highly resolved simulations. J. Fluid Mech. 901, A5.CrossRefGoogle Scholar
Gustavsson, K., Jucha, J., Naso, A., Lévêque, E., Pumir, A. & Mehlig, B. 2017 Statistical model for the orientation of non-spherical particles settling in turbulence. Phys. Rev. Lett. 119 (25), 254501.Google Scholar
Gustavsson, K., Sheikh, M.Z., Lopez, D., Naso, A., Pumir, A. & Mehlig, B. 2019 Effect of fluid inertia on the orientation of a small prolate spheroid settling in turbulence. New J. Phys. 21 (8), 083008.Google Scholar
Harper, E.Y. & Chang, I.-D. 1968 Maximum dissipation resulting from lift in a slow viscous shear flow. J. Fluid Mech. 33 (2), 209225.CrossRefGoogle Scholar
Hyman, H.A., Ballantyne, A., Friedman, H.W., Reilly, D.A., Southworth, R.C. & Dym, C.L. 1982 Intense-pulsed plasma x-ray sources for lithography: mask damage effects. J. Vac. Sci. Technol. 21 (4), 10121016.CrossRefGoogle Scholar
Jeffery, G.B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jiang, F., Zhao, L., Andersson, H.I., Gustavsson, K., Pumir, A. & Mehlig, B. 2021 Inertial torque on a small spheroid in a stationary uniform flow. Phys. Rev. Fluids 6 (2), 024302.Google Scholar
Jie, Y., Cui, Z., Xu, C. & Zhao, L. 2022 On the existence and formation of multi-scale particle streaks in turbulent channel flows. J. Fluid Mech. 935, A18.CrossRefGoogle Scholar
Jie, Y., Xu, C., Dawson, J.R., Andersson, H.I. & Zhao, L. 2019 a Influence of the quiescent core on tracer spheroidal particle dynamics in turbulent channel flow. J. Turbul. 20 (7), 424438.Google Scholar
Jie, Y., Zhao, L., Xu, C. & Andersson, H.I. 2019 b Preferential orientation of tracer spheroids in turbulent channel flow. Theor. Appl. Mech. Lett. 9 (3), 212214.CrossRefGoogle Scholar
Kleinstreuer, C. & Feng, Y. 2013 Computational analysis of non-spherical particle transport and deposition in shear flow with application to lung aerosol dynamics–a review. J. Biomech. Engng 135, 021008.CrossRefGoogle ScholarPubMed
Li, R.-Y., Cui, Z.-W., Huang, W.-X., Zhao, L.-H. & Xu, C.-X. 2018 On rotational dynamics of a finite-sized ellipsoidal particle in shear flows. Acta Mechanica 239, 449467.Google Scholar
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43 (1), 195217.CrossRefGoogle Scholar
Magnaudet, J. & Abbas, M. 2021 Near-wall forces on a neutrally buoyant spherical particle in an axisymmetric stagnation-point flow. J. Fluid Mech. 914, A18.CrossRefGoogle Scholar
Marchioli, C., Fantoni, M. & Soldati, A. 2010 Orientation, distribution, and deposition of elongated, inertial fibers in turbulent channel flow. Phys. Fluids 22 (3), 033301.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mechanica 224 (10), 23112329.Google Scholar
Marchioli, C., Zhao, L. & Andersson, H.I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28 (1), 013301.CrossRefGoogle Scholar
Michel, A. & Arcen, B. 2021 Long time statistics of prolate spheroids dynamics in a turbulent channel flow. Intl J. Multiphase Flow 135, 103525.CrossRefGoogle Scholar
Michel, A. & Arcen, B. 2023 Translational and angular velocities statistics of inertial prolate ellipsoids in a turbulent channel flow up to $Re_\tau = 1000$. J. Fluid Mech. 966, A17.Google Scholar
Milici, B. & De Marchis, M. 2016 Statistics of inertial particle deviation from fluid particle trajectories in horizontal rough wall turbulent channel flow. Intl J. Heat Fluid Flow 60, 111.CrossRefGoogle Scholar
Milici, B., De Marchis, M., Sardina, G. & Napoli, E. 2014 Effects of roughness on particle dynamics in turbulent channel flows: a DNS analysis. J. Fluid Mech. 739, 465478.Google Scholar
Molyneaux, A., Harris, M., Sharkh, S., Hill, S. & Graaff, T. de 2017 Maintenance free gas bearing helium blower for nuclear plant. IOP Conf. Ser. 232 (1), 012063.CrossRefGoogle Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 a Dynamics of prolate ellipsoidal particles in a turbulent channel flow. Phys. Fluids 20 (9), 093302.Google Scholar
Mortensen, P.H., Andersson, H.I., Gillissen, J.J.J. & Boersma, B.J. 2008 b On the orientation of ellipsoidal particles in a turbulent shear flow. Intl J. Multiphase Flow 34, 678683.CrossRefGoogle Scholar
Njobuenwu, D.O. & Fairweather, M.L. 2016 Simulation of inertial fibre orientation in turbulent flow. Phys. Fluids 28 (6), 063307.CrossRefGoogle Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanière, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.CrossRefGoogle Scholar
Ouchene, R., Polanco, J.I., Vinkovic, I. & Simoëns, S. 2018 Acceleration statistics of prolate spheroidal particles in turbulent channel flow. J. Turbul. 19 (10), 827848.Google Scholar
Pierson, J.-L., Kharrouba, M. & Magnaudet, J. 2021 Hydrodynamic torque on a slender cylinder rotating perpendicularly to its symmetry axis. Phys. Rev. Fluids 6 (9), 094303.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ravnik, J., Marchioli, C. & Soldati, A. 2018 Application limits of Jeffery's theory for elongated particle torques in turbulence: a DNS assessment. Acta Mechanica 229 (2), 827839.Google Scholar
Sabban, L. & van Hout, R. 2011 Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol. Sci. 42 (12), 867882.CrossRefGoogle Scholar
Sanjeevi, S.K.P., Kuipers, J.A.M. & Padding, J.T. 2018 Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.Google Scholar
Sardina, G., Schlatter, P., Picano, F., Casciola, C.M., Brandt, L. & Henningson, D.S. 2012 Self-similar transport of inertial particles in a turbulent boundary layer. J. Fluid Mech. 706, 584596.Google Scholar
Shapiro, M. & Goldenberg, M. 1993 Deposition of glass fiber particles from turbulent air flow in a pipe. J. Aerosol. Sci. 24 (1), 6587.Google Scholar
Sheikh, M.Z., Gustavsson, K., Lopez, D., Lévêque, E., Mehlig, B., Pumir, A. & Naso, A. 2020 Importance of fluid inertia for the orientation of spheroids settling in turbulent flow. J. Fluid Mech. 886, A9.Google Scholar
Siewert, C., Kunnen, R.P.J., Meinke, M. & Schröder, W. 2014 Orientation statistics and settling velocity of ellipsoids in decaying turbulence. Atmos. Res. 142, 4556.CrossRefGoogle Scholar
Uhlmann, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys. Fluids 20 (5), 053305.Google Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249–76.Google Scholar
van Wachem, B., Zastawny, M., Zhao, F. & Mallouppas, G. 2015 Modelling of gas–solid turbulent channel flow with non-spherical particles with large Stokes numbers. Intl J. Multiphase Flow 68, 8092.Google Scholar
Yang, K., Zhao, L. & Andersson, H.I. 2020 Orientation of inertial spheroids in turbulent Couette–Poiseuille flow with a shear-free wall. Intl J. Multiphase Flow 132, 103411.Google Scholar
Yuan, W., Andersson, H.I., Zhao, L., Challabotla, N.R. & Deng, J. 2017 Dynamics of disk-like particles in turbulent vertical channel flow. Intl J. Multiphase Flow 96, 86100.Google Scholar
Yuan, W., Zhao, L., Andersson, H.I. & Deng, J. 2018 a Three-dimensional Voronoï analysis of preferential concentration of spheroidal particles in wall turbulence. Phys. Fluids 30 (6), 063304.Google Scholar
Yuan, W., Zhao, L., Challabotla, N.R., Andersson, H.I. & Deng, J. 2018 b On wall-normal motions of inertial spheroids in vertical turbulent channel flows. Acta Mechanica 229 (7), 29472965.CrossRefGoogle Scholar
Zastawny, M., Mallouppas, G., Zhao, F. & van Wachem, B. 2012 Derivation of drag and lift force and torque coefficients for non-spherical particles in flows. Intl J. Multiphase Flow 39, 227239.Google Scholar
Zhang, H., Ahmadi, G., Fan, F.-G. & McLaughlin, J.B. 2001 Ellipsoidal particles transport and deposition in turbulent channel flows. Intl J. Multiphase Flow 27 (6), 9711009.Google Scholar
Zhao, F. & van Wachem, B.G.M. 2013 Direct numerical simulation of ellipsoidal particles in turbulent channel flow. Acta Mechanica 224 (10), 23312358.Google Scholar
Zhao, L. & Andersson, H.I. 2016 Why spheroids orient preferentially in near-wall turbulence. J. Fluid Mech. 807, 221234.Google Scholar
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2015 Rotation of nonspherical particles in turbulent channel flow. Phys. Rev. Lett. 115 (24), 244501.CrossRefGoogle ScholarPubMed
Zhao, L., Challabotla, N.R., Andersson, H.I. & Variano, E.A. 2019 Mapping spheroid rotation modes in turbulent channel flow: effects of shear, turbulence and particle inertia. J. Fluid Mech. 876, 1954.Google Scholar
Zhao, L., Marchioli, C. & Andersson, H.I. 2014 Slip velocity of rigid fibers in turbulent channel flow. Phys. Fluids 26 (6), 063302.Google Scholar
Zhou, T., Zhao, L.H., Huang, W. & Xu, C. 2020 Non-monotonic effect of mass loading on turbulence modulations in particle-laden channel flow. Phys. Fluids 32 (4), 043304.Google Scholar