Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-20T07:25:13.807Z Has data issue: false hasContentIssue false

The effect of background rotation on fluid motions: a report on Euromech 245

Published online by Cambridge University Press:  26 April 2006

E. J. Hopfinger
Affiliation:
Institut de Mécanique, Université de Grenoble, INPG and CNRS, BP 53, 38041 Grenoble, France
P. F. Linden
Affiliation:
Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street, Cambridge, CB3 9EW, UK

Abstract

The 245th Euromech Colloquium, on the effect of background rotation on fluid motions, was held in Cambridge from 10–13 April 1989 with the two authors acting as chairmen. There were sixty-five participants with widely different backgrounds. The striking feature of the Colloquium was the recent advances on nonlinear processes. A wide range of nonlinear phenomena was presented and particular emphasis was on the formation and dynamics of coherent vortices. The similarities between the processes in rotating, curved and stratified flows, which lead to anisotropic motions and long-lived coherent structures alongside linear wave motions was a feature of many of the presentations. Fifty-one papers were presented, covering engineering, geophysical and astrophysical applications of rotating fluids. These papers are summarized in this report with the purpose of giving an up-to-date view of current research in rotating fluids.

Type
Research Article
Copyright
© 1990 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, K. D. The rôle of rotation in long period dynamics of the Earth's fluid core.
Alfredsson, H. I. & Matsson, J. Instabilities in curved and rotating channel flow.
Alfredsson, H. I. & Persson, H. 1989 Instabilities in channel flow with system rotation. J. Fluid Mech. 202, 543.Google Scholar
Amberg, G. Boundary layers in a sectioned centrifuge, visualisation and theory.
Amberg, G. & Greenspan, H. P. 1987 Boundary layers in a sectioned centrifuge. J. Fluid Mech. 181, 77.Google Scholar
Andersson, H. I. & Nilsen, P. J. Algebraic modelling of interplay of Reynolds stresses in turbulent shear flows subjected to system rotation.
Avellan, F. Influence of swirling structure dynamics on development of leading-edge cavitations.
Avellan, F., Dupont, P. & Ryhming, I. 1988 Generation mechanism and dynamics of cavitation vortices downstream of a fixed leading edge cavity In Proc. 17th Symp. on Naval Hydrodynamics, The Hague 1988.
Bardina, J., Ferziger, J. H. & Rogallo, R. S. 1985 Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321.Google Scholar
Bar-Joseph, P., Seeling, S., Solan, A. & Roesner, K. G. 1987 Vortex breakdown in spherical gap. Phys. Fluids 30, 1581.Google Scholar
Bar-Joseph, P., Solan, A. & Roesner, K. G. Vortical motions in the polar region of a spherical gap.
Benjamin, T. B. 1962 Theory of vortex breakdown phenomena. J. Fluid Mech. 14, 593.Google Scholar
Benton, E. R. A. & Clark, A. 1974 Spin-up. Ann. Rev. Fluid Mech. 6, 257.Google Scholar
BorgstrÖm, L. Wakes behind the caulks of a disc stack centrifuge.
Boubnov, B. M. & Golitsyn, G. S. Temperature and velocity fields for convection in a horizontal layer of rotating fluid.
Boubnov, B. M. & Golitsyn, G. S. 1986 Experimental study of convective structures in rotating fluids. J. Fluid Mech. 167, 503.Google Scholar
Boubnov, B. M. & Golitsyn, G. S. 1988 Thermal structure and heat transfer at the convection in the rotating fluid layer. Dokl. Acad. Nauk SSSR 300 (2), 350.Google Scholar
Bradshaw, P. 1969 The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36, 177.Google Scholar
Bretherton, F. P., Carrier, G. F. & Longuet-Higgins, M. S. 1966 Report on the I.U.T.A.M. symposium on rotating fluid systems. J. Fluid Mech. 26, 293.Google Scholar
Brindley, J., Gimson, N. & Moroz, I. M. Amplitude vacillation of baroclinic waves in a rotating fluid system.
Bühler, K. Shear flow in a spherical gap.
Bühler, K. 1989 Scherschichtströmungen im Kugelspalt. Z. Flugwiss. Weltraumforsch. 13, 8.Google Scholar
Buzyna, G., Pfeffer, R. L. & Kung, R. 1984 Transition to turbulence in a rotating differentially heated annulus of fluid. J. Fluid Mech. 145, 377.Google Scholar
Cambon, C. Homogeneous turbulence in rotating fluid: characterization and modelling of the anisotropic features.
Cambon, C. & Jaquin, L. 1989 Spectral approach to non-isotropic turbulence subjected to rotation. J. Fluid Mech. 202, 295.Google Scholar
Carton, X. Barotropic and baroclinic instabilities of quasi-geostrophic circular vortices.
Chabert D'Hieres, G., Davies, P. & Didelle, H. Measurements of forces on circular cylinders in a rotating homogeneous fluid.
Craik, A. D. D. The Floquet instability of unbounded elliptical-vortex flows subject to a Coriolis force.
Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech. 198, 275.Google Scholar
Dalziel, S. B. The effect of rotation on two-layer maximal exchange flows.
Darby, M. S. & Willmott, A. J. The influence of variable depth mixed layers on ocean Rossby wave propagation.
Daube, O. Axisymmetric vortex breakdown with and without a free surface.
Daube, O. & Sorensen, J.-N. 1989 Simulation numerique de l’écanlement periodique axisymétrique dans une cavité cylindrique. C. R. Acad. Sci. Paris (in press).Google Scholar
Dritschel, G. G. On the stabilisation of a two-dimensional vortex strip by adverse shear.
Escudier, M. P. 1984 Observations of the flow produced in cylindrical container by a rotating endwall. Expts. Fluids 2, 186.Google Scholar
Etling, D. Vortex shedding in stratified rotating flows: applications to vortex streets behind large islands.
Fernando, H. J. S., Boyer, D. L. & Chen, R. Turbulent thermal convection in rotating fluid.
Fleury, M. & Mory, M. Effects of rotation on turbulent mixing across a density interface.
Gill, A. E. 1977 The hydraulics of rotating channel flow. J. Fluid Mech. 80, 641.Google Scholar
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349.Google Scholar
Gledzer, E. B., Dolzhanskey, F. V. & Obukhov, A. M. Instability of elliptical rotation and simple models of vortex fluid flows.
Greenspan, H. P. & Ungarish, M. 1985 On the enhancement of centrifugal separation, J. Fluid Mech. 157, 359.Google Scholar
Griffiths, R. W. & Hopfinger, E. J. 1987 Coalescing of geostrophic vortices. J. Fluid Mech. 178, 73.Google Scholar
Griffiths, R. W. & Linden, P. F. 1981 The stability of buoyancy driven coastal currents. Dyn. Atmos. Oceans 5, 281.Google Scholar
Groesen, E. Van. Steadily rotating configurations of 2D confined vortex regions.
Heijst, G. J. F. Van & Davies, P. A. Spin-up phenomena in non-axisymmetric containers.
Heijst, G. J. F. Van. Experiments on vortices in rotating fluids.
Hide, R. On the influence of Coriolis forces on thermal convection in rotating fluids in containers of various shapes and topological characteristics: a review of some recent work.
Hopfinger, E. J. 1989 Turbulence and vortices in rotating fluids. In Proc. I.U.T.A.M. (ed. P. Germain, M. Piau & D. Camllerie), p. 117.
Hopfinger, E. J., Atten, P. & Busse, F. H. 1979 Instability and convection in fluid layers: a report on Euromech 106. J. Fluid Mech. 92, p. 217.Google Scholar
Hopfinger, E. J., Browand, F. K. & Gagne, Y. 1982 Turbulence and waves in a rotating tank. J. Fluid Mech. 125, 505.Google Scholar
Hunt, J. C. R. & Hussain, F. Vorticity and helicity of fluid volumes in inviscid flow with rotatio and shear.
Jaquin, L. Experimental characterisation of the transition toward two-dimensionality in rotating homogeneous turbulence.
Johnston, J. P., Halleen, R. M. & Lezius, D. L. 1972 Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56, 533.Google Scholar
Johnson, E. R., Hermann, A. J. & Rhines, P. B. The vorticity dynamics of Rossby adjustment in a channel.
Kelvin, Lord 1887 Stability of fluid motion: rectilinear motion of viscous fluid between two parallel plates. Phil. Mag. 24 (5), 188.Google Scholar
Klein, P. 1990 Baroclinic instability and transition to chaos: a review. Fluid Dyn. Res. (in press).Google Scholar
Larsen, J. & Roesner, K. G. 1982 Optical flow-velocity measurements in irregularly shaped cavities. In Recent Contributions to Fluid Mechanics (ed. W. Hasse) Springer.
Le QuÉrÉ, P. & Pécheux, J. Convection in a rotating annulus using a three-dimensional pseudo-spectral algorithm.
Le QuÉrÉ, P. & Pécheux, J. 1989 Numerical simulation of multiple flow transitions in axisymmetric annulus convection. J. Fluid Mech. 206, 517.Google Scholar
Lewis, S. R. Long-lived eddies in the atmosphere of Jupiter.
Lorenzen, A., Meier, G. E. A. & Assenheimer, M. Experiments on bifurcation phenomena in baroclinic unstable flow.
Manasseh, R. Resonant collapse in a precessing tank.
Maxworthy, T. & Monismith, G. Selective withdrawal and spin-up of a rotating stratified fluid.
Mcclimans, T. A. Frontal dynamics with non-uniform underflows.
Mcewan, A. D. 1970 Inertial oscillations in a rotating fluid cylinder. J. Fluid Mech. 40, 603640.Google Scholar
Mcwilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flow. J. Fluid Mech. 146, 2143.Google Scholar
Métais, O. Numerical simulations of combined effects of stable stratification and rotation on turbulence.
Métais, O. & Herring, J. R. 1989 Numerical simulations in freely eveloving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117.Google Scholar
Monismith, S. G. & Maxworthy, T. 1989 Selective withdrawal and spin-up of a rotating stratified fluid. J. Fluid Mech. 199, 377.Google Scholar
Morchoisne, C., Teissedre, K. & Dang, K. Effects of background rotation on turbulent channel flows.
Muller, M. R. The effect of background rotation on the motion of buoyant plumes and thermals.
Muller, M. R. & Burch, J. N. 1985 An experimental study of the behaviour of transient isolated convection in a rigidly rotating fluid. Expts Fluids 3, 17.Google Scholar
Naimi, M., Devienne, R. & Lebouché, M. Visualisation of flow patterns and velocity distributions in Couette-Taylor-Poiseuille flow: case of yield-pseudoplastic fluid.
Niino, H. Quasi-geostrophic flow over a rough bottom.
O'Donnell, J. & Linden, P. F. Experiments on the spin-up of fluid in a rotating cylinder.
Pagan, D. & Benay, R. 1988 Numerical analysis of vortex breakdown under pressure gradients. La Recherche Aerospatiale, no. 1988–1, 14.Google Scholar
Pagan, D. & Sollgnac, J.-L. Vortex breakdown induced by an adverse pressure gradient.
Pedlosky, J. 1967 The spin-up of a stratified fluid. J. Fluid Mech. 28, 463.Google Scholar
Randriamampiania, A., Chaouche, A., Segura, E. & Boutoux, P. Numerical predictions for the flow and heat transfer in rotating systems.
Rayleigh, Lord 1894 The Theory of Sound, 2nd edn. (and 3rd edn 1945). Macmillan.
Read, P. L. A laboratory analogue of long-lived, baroclinic eddies on Jupiter and Saturn: β-plane dynamics and tracer kinematics.
Read, P. L. & Hide, R. 1983 Long-lived eddies in the laboratory and in the atmosphere of Jupiter and Saturn. Nature 302, 126.Google Scholar
Rieutard, M. Linear theory of rotating fluids using spherical harmonics.
Smeed, D. A. Topographic waves in rotating, stratified fluid.
Smeed, D. A. 1990 Separation of stratified rotating flow past three-dimensional topography. J. Fluid Mech. (submitted).Google Scholar
Sommeria, J., Meyers, S. D. & Swinney, H. L. Waves and vortices in rotating shear flows.
Sommeria, J., Meyers, S. D. & Swinney, H. L. 1988 Laboratory simulation of Jupiter's Great Red Spot. Nature 331, 689.Google Scholar
Spohn, A., Mory, M. & Hopfinger, E. J. Flow regimes and vortex breakdown produced by a rotating disc in a cylindrical container.
Thomson, R. E. 1977 Vortex streets in the wake of the Aleutian island. J. Atmos. Sci. 105, 873.Google Scholar
Tritton, D. J. The effect of rotation on shear flow turbulence.
Tritton, D. J. 1985 Experiments on turbulence in geophysical fluid dynamic. I. - Turbulence in rotating fluids In Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Soc. Italiana di Fiscia, Bologna.
Verron, J. & Hopfinger, E. J. Numerical simulations of the merging of baroclinic vortices.
Zhang, K.-K. & Busse, F. H. Thermal convections in rotating sphere.