Published online by Cambridge University Press: 13 March 2013
A characteristic feature of the onset of turbulence in shear flows is the appearance of an ‘edge’, a codimension-one invariant manifold that separates ‘lower’ orbits, which decay directly to the laminar state, from ‘upper’ orbits, which decay more slowly and less directly. The object of this paper is to elucidate the structure of the edge that makes this behaviour possible. To this end we consider a succession of low-dimensional models. In doing this we isolate geometric features that are robust under increase of dimension and are therefore candidates for explaining analogous features in higher dimension. We find that the edge, which is the stable manifold of a ‘lower-branch’ state, winds endlessly around an ‘upper-branch’ state in such a way that upper orbits are able to circumnavigate the edge and return to the laminar state.