Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-02T20:48:16.535Z Has data issue: false hasContentIssue false

Dynamics of water entry

Published online by Cambridge University Press:  10 May 2018

Lionel Vincent
Affiliation:
Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
Tingben Xiao
Affiliation:
Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
Daniel Yohann
Affiliation:
Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
Sunghwan Jung
Affiliation:
Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24060, USA
Eva Kanso*
Affiliation:
Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA
*
Email address for correspondence: [email protected]

Abstract

Diving induces large pressure during water entry accompanied by the creation of cavity and water splash ejected from the free water surface. To minimize impact forces, divers streamline their shape at impact. Here, we investigate the impact forces and splash evolution of wedges entering water as a function of the wedge opening angle. A gradual transition from impactful to smooth entry is observed as the wedge angle decreases. After submersion, the wedge experiences significantly smaller drag forces (two-fold smaller) than immersed wedges. Our experimental findings compare favourably with existing force models upon the introduction of empirically based corrections. We experimentally characterize the shapes of the cavity and splash created by the wedge and find that they are independent of the entry velocity at short times, but that the splash exhibits distinct variations in shape at later times. We propose a one-dimensional model of the splash that takes into account gravity, surface tension and aerodynamic forces. The model shows, in conjunction with experimental data, that the splash shape is dominated by the interplay between a destabilizing Venturi-suction force due to air rushing between the splash and the water surface and a stabilizing force due to surface tension. Taken together, these findings could direct future research aimed at understanding and combining the mechanisms underlying all stages of water entry in application to engineering and bio-related problems, including naval engineering, disease spreading or platform diving.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrate, S. 2011 Hull slamming. Appl. Mech. Rev. 64 (6), 060803.Google Scholar
Amador, G. J., Yamada, Y., McCurley, M. & Hu, D. L. 2013 Splash-cup plants accelerate raindrops to disperse seeds. J. R. Soc. Interface 10 (79), 20120880.Google Scholar
Andersen, A., Pesavento, U. & Wang, Z. J. 2005 Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.Google Scholar
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.Google Scholar
Bao, C. M., Wu, G. X. & Xu, G. D. 2016 Simulation of water entry of a two-dimension finite wedge with flow detachment. J. Fluid Struct. 65, 4459.CrossRefGoogle Scholar
Battistin, D. & Iafrati, A. 2003 Hydrodynamic loads during water entry of two-dimensional and axisymmetric bodies. J. Fluids Struct. 17 (5), 643664.CrossRefGoogle Scholar
Bereznitski, A. 2001 Slamming: the role of hydroelasticity. Intl Shipbuild. Prog. 48 (4), 333351.Google Scholar
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities. Academic Press.Google Scholar
Calderer, A., Kans, S. & Sotiropoulos, F. 2014 Level set immersed boundary method for coupled simulation or air/water interaction with complex floating structures. J. Comput. Phys. 277, 201227.Google Scholar
Chang, B., Croson, M., Straker, L., Gart, S., Dove, C., Gerwin, J. & Jung, S. 2016 How seabirds plunge-dive without injuries. Proc. Natl Acad. Sci. USA 113 (43), 1200612011.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.CrossRefGoogle Scholar
Duclaux, V., Caille, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.Google Scholar
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3 (3), 180183.CrossRefGoogle Scholar
Faltinsen, O. M. 2005 Hydrodynamics of High-Speed Marine Vehicles. Cambridge University Press.Google Scholar
Gart, S., Chang, B., Slama, B., Goodnight, R., Um, S. H. & Jung, S. 2013 Dynamics of squeezing fluids: clapping wet hands. Phys. Rev. E 88, 023007.Google Scholar
Gekle, S., Peters, I. R., Gordillo, J. M., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 0240501.Google Scholar
Ghabache, E., Antkowiak, A., Josserand, C. & Séon, T. 2014 On the physics of fizziness: how bubble bursting controls droplets ejection. Phys. Fluids 26 (12), 121701.CrossRefGoogle Scholar
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12, 20141092.Google Scholar
Glasheen, J. W. & McMahon, T. A. 1996 Vertical entry of disks at low Froude numbers. Phys. Fluids 8, 2078.CrossRefGoogle Scholar
Gong, K., Liu, H. & Wang, B. 2009 Water entry of a wedge based on SPH model with an improved boundary treatment. J. Hydrodyn. B (English Ed.) 21 (6), 750757.Google Scholar
Gordillo, J. M., Sevilla, A., Rodríguez-Rodríguez, J. & Martínez-Bazán, C. 2005 Axisymmetric bubble pinch-off at high Reynolds number. Phys. Rev. Lett. 95, 194501.Google Scholar
Greenhow, M. 1987 Wedge entry into initially calm water. Appl. Ocean Res. 9 (4), 214223.Google Scholar
Harrison, S. M., Cohen, R. C. Z., Cleary, P. W., Barris, S. & Rose, G. 2012 Forces on the body during elite competitive platform diving. In Ninth International Conference on CFD in the Minerals and Process Industries. CSIRO.Google Scholar
Howison, S. D., Hockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.CrossRefGoogle Scholar
Hsieh, S. T. & Lauder, G. V. 2004 Running on water: three-dimensional force generation by basilisk lizards. Proc. Natl. Acad. Sci. 101 (48), 1678416788.Google Scholar
Joung, Y. S., Ge, Z. & Buie, C. R. 2017 Bioaerosol generation by raindrops on soil. Nat. Commun. 8, 14668.CrossRefGoogle ScholarPubMed
Von Kármán, T.1929 The impact on sea plane floats during landing. Technical Note 321, 309313. National Advisory Committee for Aeronautics.Google Scholar
Knapp, R. T., Daily, J. W. & Hammitt, F. G. 1970 Cavitation. McGraw-Hill.Google Scholar
Korobkin, A. A. 1996 Water impact problems in ship hydrodynamics. In Advances in Marine Hydrodynamics (ed. Ohkusu, M.), vol. 5. Computational Mechanics Publications.Google Scholar
Korobkin, A. A. 2001 Water entry of a perforated wedge. In Proceedings of the 16th Int. Workshop on Water Waves and Floating Bodies (ed. Mori, K. & Iwashita, H.). Kazu-hiro Mori.Google Scholar
Korobkin, A. A. 2004 Analytical models of water impact. Eur. J. Appl. Maths 15, 821838.CrossRefGoogle Scholar
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20, 159185.Google Scholar
Lhuissier, H. & Villermaux, E. 2009 Soap films burst like flapping flags. Phys. Rev. Lett. 103, 054501.Google Scholar
Logvinovich, G. V.1972 Hydrodynamics of free-boundary flows. Tech. Rep. National Advisory Committee for Aeronautics.Google Scholar
Marmottant, P. & Villermaux, E. 2004 Fragmentation of stretched liquid ligaments. Phys. Fluids 16, 2732.CrossRefGoogle Scholar
Marston, J. O., Mansoor, M. M., Truscott, T. T. & Thoroddsen, S. T. 2015 Buckling instability of crown sealing. Phys. Fluids 27, 91112.Google Scholar
Marston, J. O., Truscott, T. T., Speirs, N. B., Mansoor, M. M. & Thoroddsen, S. T. 2016 Crown sealing and buckling instability during water entry of spheres. J. Fluid Mech. 794, 506529.Google Scholar
May, A. 1952 Vertical entry of missiles into water. J. Appl. Phys. 23, 13621372.Google Scholar
May, A. & Woodhull, J. C. 1948 Drag coefficients of steel spheres entering water vertically. J. Appl. Phys. 19, 11091121.Google Scholar
Mei, X., Liu, Y. & Yue, D. K. P. 1999 On the water impact of general two-dimensional sections. Appl. Ocean Res. 21, 115.CrossRefGoogle Scholar
Meyerhoff, W. K. 1970 Added masses of thin rectangular plates calculated from potential theory. J. Ship. Res. 14, 100111.Google Scholar
Moffat, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 118.Google Scholar
Panciroli, R., Shams, A. & Porfiri, M. 2015 Experiments on the water entry of curved wedges: high speed imaging and particle image velocimetry. Ocean Engng 94, 213222.Google Scholar
Park, S. & Rhee, S. H. 2012 Computational analysis of turbulent super-cavitating flow around a two-dimensional wedge-shaped cavitator geometry. Comput. Fluids 70, 7385.CrossRefGoogle Scholar
Pierson, J. D.1950 Stevens Institute of Technology Hoboken NJ experimental towing tank. Tech. Rep. 381 Institute of Technology Hoboken, NJ.Google Scholar
Quéré, D. 2005 Fluid dynamics: impact on Everest. Nature 435, 11681169.Google Scholar
Ropert-Coudert, Y., Gremillet, D., Ryan, P., Kato, A., Naito, Y. & Maho, Y. L. 1994 Between air and water: the plunge dive of the Cape Gannet Morus capensis . Ibis 146, 241290.Google Scholar
Rosenhead, L. 1939 The steady two-dimensional radial flow of viscous fluid between two inclined plane walls. Proc. R. Soc. Lond. A 175 (963), 436467.Google Scholar
Seddon, C. M. & Moatamedi, M. 2006 Review of water entry with applications to aerospace structures. Intl J. Impact Engng 32, 10451067.Google Scholar
Stenius, I., Rosen, A. & Kuttenkeuler, J. 2006 Explicit FE-modelling of fluid–structure interaction in hull–water impacts. Intl Shipbuild. Prog. 53 (2), 103121.Google Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. Part III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Thoroddsen, S. T., Thoroval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106, 034501.Google Scholar
Truscott, T. T., Epps, B. P. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.CrossRefGoogle Scholar
Truscott, T. T., Epps, B. P. & Techet, A. H. 2012 Unsteady forces on spheres during free-surface water entry. J. Fluid Mech. 704, 173210.Google Scholar
Truscott, T. T. & Techet, A. H. 2009 Water entry of spinning sphere. J. Fluid Mech. 625, 135165.Google Scholar
Tveitnes, T., Fairlie-Clarke, A. C. & Varyani, K. 2008 An experimental investigation into the constant velocity water entry of wedge-shaped sections. Ocean Engng 35, 14631478.Google Scholar
Wagner, H. 1932 Über Stoss- und Gleitvorgänge an der Oberfläche von Flussigkeiten. J. Appl. Maths Mech. 12 (4), 193215.Google Scholar
Wang, J., Lugni, C. & Faltinsen, O. M. 2015 Experimental and numerical investigation of a freefall wedge vertically entering the water surface. Appl. Ocean Res. 51, 181203.Google Scholar
Wang, S., Luo, H. B. & Soares, C. Guedes 2012 Explicit FE simulation of slamming load on rigid wedge with various deadrise angles during water entry. In Maritime Engineering and Technology, pp. 399406. Taylor & Francis.Google Scholar
Worthington, A. M. 1908 A Study of Splashes. Longmans, Green, and Co.Google Scholar
Wu, G. X., Sun, H. & He, Y. S. 2004 Numerical simulation and experimental study of water entry of a wedge in free fall motion. J. Fluids Struct. 19, 277289.CrossRefGoogle Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.Google Scholar
Yettou, E.-M., Desrochers, A. & Champoux, Y. 2006 Experimental study on the water impact of a symmetrical wedge. Fluid Dyn. Res. 38, 4766.CrossRefGoogle Scholar
Zhao, R. & Faltinsen, O. 1993 Water entry of two-dimensional bodies. J. Fluid Mech. 246, 593612.CrossRefGoogle Scholar
Zhao, R., Faltinsen, O. & Aarsnes, J. 1996 Water entry of arbitrary two-dimensional sections with and without flow separation. In Proc. 21st Symposium on Naval Hydrodynamics, pp. 408423. National Academy Press.Google Scholar

Vincent et al. supplementay movie 1

Impact force on a diving wedge during water entry.

Download Vincent et al. supplementay movie 1(Video)
Video 9.1 MB

Vincent et al. supplementay movie 2

Splash dynamics following the water entry of a wedge, demonstrating the effect of air flow and air-induced suction force on the splash evolution.

Download Vincent et al. supplementay movie 2(Video)
Video 49 MB