Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T21:28:44.211Z Has data issue: false hasContentIssue false

Dynamics of strong swept-shock/turbulent-boundary-layer interactions

Published online by Cambridge University Press:  08 June 2020

Michael C. Adler*
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
Datta V. Gaitonde*
Affiliation:
Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

The mechanisms of unsteadiness in nominally two-dimensional (2-D) shock/turbulent-boundary-layer interactions (STBLIs) cannot be directly extended to three-dimensional (3-D) STBLIs, because of differences in interaction structure; swept 3-D interactions, including the sharp-fin and swept-compression-ramp configurations, are of particular interest in this work. Complications arise from the observation that the separation length employed to scale low-frequency unsteadiness in 2-D (spanwise homogeneous) interactions is not a global property of 3-D (swept) interactions, due to the quasi-conical symmetry of the latter. Also, flow separation in 3-D interactions is topologically different, in that closure of the primary separation cannot occur without breaking the quasi-conical symmetry of the interaction – consequently, the unsteady properties of the separation are different. To address these points, large-eddy simulations are performed to assess unsteadiness in 3-D interactions, with the aim of understanding key differences relative to analogous 2-D interactions, the former of which have received less attention in the literature. The mechanism underlying the prominent band of low-frequency unsteadiness (two decades below the characteristic boundary-layer frequency) is shown to be significantly muted in swept interactions. An interesting scaling for the band of mid-frequency unsteadiness is uncovered (at least one decade below the characteristic boundary-layer frequency). This is a consequence of the observed connection between coherent fluctuations in the separated shear layer and local mean-flow gradients, indicating a mix between competing 2-D and 3-D free-interaction scaling laws. In contrast, high-frequency fluctuations largely retain the 2-D scaling introduced by the incoming turbulent boundary layer. The spatial structure of the mid-frequency coherence in 3-D STBLIs is isolated, revealing the significant influence of these convective coherent structures on shock rippling/corrugation, as well as a spanwise dependence of coherence size consistent with the 3-D mean-flow similarity scaling. Finally, the dynamic linear response of a representative 3-D interaction is compared to that of a representative 2-D interaction; the absolute instability present in the 2-D interaction is not present in the 3-D interaction. The coincident absence of both the absolute instability and associated band of low-frequency unsteadiness in 3-D STBLIs underscores the significance of this absolute instability in facilitating low-frequency unsteadiness in 2-D interactions.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, M. C.2019 On the advancement of phenomenological and mechanistic descriptions of unsteadiness in shock-wave/turbulent-boundary-layer interactions. PhD dissertation, The Ohio State University.Google Scholar
Adler, M. C. & Gaitonde, D. V.2017 Unsteadiness in swept-compression-ramp shock/turbulent-boundary-layer interactions. In 55th AIAA Aerospace Sciences Meeting. AIAA Paper 2017-0987. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Adler, M. C. & Gaitonde, D. V. 2018a Dynamic linear response of a shock/turbulent-boundary-layer interaction using constrained perturbations. J. Fluid Mech. 840, 291341.CrossRefGoogle Scholar
Adler, M. C. & Gaitonde, D. V.2018b Unsteadiness in shock/turbulent-boundary-layer interactions with open flow separation. In 2018 AIAA Aerospace Sciences Meeting. AIAA Paper 2018-2075. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Adler, M. C. & Gaitonde, D. V. 2019a Flow similarity in strong swept-shock/turbulent-boundary-layer interactions. AIAA J. 57 (4), 15791593.CrossRefGoogle Scholar
Adler, M. C. & Gaitonde, D. V.2019b Structure, scale, and dynamics of a double-fin shock/turbulent-boundary-layer interaction at Mach 4. In 2019 AIAA Science and Technology Forum and Exposition. AIAA Paper 2019-0096. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Adler, M. C., Gonzalez, D. R., Stack, C. M. & Gaitonde, D. V. 2018 Synthetic generation of equilibrium boundary layer turbulence from modeled statistics. Comput. Fluids 165, 127143.CrossRefGoogle Scholar
Agostini, L., Larchevêque, L. & Dupont, P. 2015 Mechanism of shock unsteadiness in separated shock/boundary-layer interactions. Phys. Fluids 27 (12), 126103.CrossRefGoogle Scholar
Agostini, L., Larcheveque, L., Dupont, P., Denieve, J. F. & Dussauge, J. P. 2012 Zones of influence and shock motion in a shock/boundary layer interaction. AIAA J. 50 (6), 13771387.CrossRefGoogle Scholar
Arora, N., Ali, M. Y., Zhang, Y. & Alvi, F. S. 2018 Flowfield measurements in a Mach 2 fin-generated shock/boundary-layer interaction. AIAA J. 56 (10), 39633974.CrossRefGoogle Scholar
Arora, N., Mears, L. & Alvi, F. S. 2019 Unsteady characteristics of a swept-shock/boundary-layer interaction at Mach 2. AIAA J. 57 (10), 45484559.CrossRefGoogle Scholar
Aubard, G., Gloerfelt, X. & Robinet, J. C. 2013 Large-eddy simulation of broadband unsteadiness in a shock/boundary-layer interaction. AIAA J. 51 (10), 23952409.CrossRefGoogle Scholar
Baldwin, A. K., Arora, N., Kumar, R. & Alvi, F. S.2016 Effect of Reynolds number on 3-D shock wave boundary layer interactions. In 46th AIAA Fluid Dynamics Conference. AIAA Paper 2016-3339. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Beresh, S., Kearney, S., Wagner, J., Guildenbecher, D., Henfling, J., Spillers, R., Pruett, B., Jiang, N., Slipchenko, M., Mance, J. et al. 2015 Pulse-burst PIV in a high-speed wind tunnel. Meas. Sci. Technol. 26 (9), 095305.CrossRefGoogle Scholar
Beresh, S. J., Clemens, N. T. & Dolling, D. S. 2002 Relationship between upstream turbulent boundary-layer velocity fluctuations and separation shock unsteadiness. AIAA J. 40 (12), 24122422.CrossRefGoogle Scholar
Bonne, N., Brion, V., Garnier, E., Bur, R., Molton, P., Sipp, D. & Jacquin, L. 2019 Analysis of the two-dimensional dynamics of a Mach 1.6 shock wave/transitional boundary layer interaction using a RANS based resolvent approach. J. Fluid Mech. 862, 11661202.CrossRefGoogle Scholar
Chapman, D., Kuehn, D. & Larson, H.1957 Investigation of separated flows in supersonic and subsonic streams with emphasis on the effect of transition. NACA Tech. Rep. TR-1356.Google Scholar
Chapman, G. T. & Yates, L. A. 1991 Topology of flow separation on three-dimensional bodies. Appl. Mech. Rev. 44 (7), 329345.CrossRefGoogle Scholar
Clemens, N. T. & Narayanaswamy, V. 2014 Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annu. Rev. Fluid Mech. 46, 469492.CrossRefGoogle Scholar
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224 (2), 924940.CrossRefGoogle Scholar
Crouch, J. D., Garbaruk, A. & Strelets, M. 2019 Global instability in the onset of transonic-wing buffet. J. Fluid Mech. 881, 322.CrossRefGoogle Scholar
Doehrmann, A. C., Padmanabhan, S., Threadgill, J. A. & Little, J. C.2018 Effect of sweep on the mean and unsteady structures of impinging shock/boundary layer interactions. In 2018 AIAA Aerospace Sciences Meeting. AIAA Paper 2018-2074. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Dolling, D. S. 2001 Fifty years of shock wave/boundary layer interaction research: what next? AIAA J. 39 (8), 15171531.CrossRefGoogle Scholar
Donohoe, S. R. & Bannink, W. J. 1997 Surface reflective visualizations of shock-wave/vortex interactions above a delta wing. AIAA J. 35 (10), 15681573.CrossRefGoogle Scholar
Dupont, P., Haddad, C. & Debiève, J. F. 2006 Space and time organization in a shock-induced separated boundary layer. J. Fluid Mech. 559, 255277.CrossRefGoogle Scholar
Dussauge, J. P., Dupont, P. & Debiève, J. F. 2006 Unsteadiness in shock wave boundary layer interactions with separation. Aerosp. Sci. Technol. 10 (2), 8591.CrossRefGoogle Scholar
Erengil, M. E. & Dolling, D. S. 1993 Effects of sweepback on unsteady separation in Mach 5 compression ramp interactions. AIAA J. 31 (2), 302311.CrossRefGoogle Scholar
Fahringer, T. W. & Thurow, B. S. 2018 Plenoptic particle image velocimetry with multiple plenoptic cameras. Meas. Sci. Technol. 29 (7), 075202.CrossRefGoogle Scholar
Gaitonde, D. V. 2015 Progress in shock wave/boundary layer interactions. Prog. Aerosp. Sci. 72, 8099.CrossRefGoogle Scholar
Gaitonde, D. V., Shang, J. S. & Visbal, M. R. 1995 Structure of a double-fin turbulent interaction at high speed. AIAA J. 33 (2), 193200.CrossRefGoogle Scholar
Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Tech. Rep., Air Vehicles Directorate, Air Force Research Laboratory, AFRL-VA-WP-TR-1998-3060.Google Scholar
Gaitonde, D. V. & Visbal, M. R. 2000 Padé-type higher-order boundary filters for the Navier–Stokes equations. AIAA J. 38 (11), 21032112.CrossRefGoogle Scholar
Ganapathisubramani, B., Clemens, N. T. & Dolling, D. S. 2009 Low-frequency dynamics of shock-induced separation in a compression ramp interaction. J. Fluid Mech. 636, 397425.CrossRefGoogle Scholar
Garmann, D. J.2013 Characterization of the vortex formation and evolution about a revolving wing using high-fidelity simulation. PhD dissertation, University of Cincinnati.Google Scholar
Gibson, B. & Dolling, D. S.1991 Wall pressure fluctuations near separation in a Mach 5, sharp fin-induced turbulent interaction. In 29th Aerospace Sciences Meeting. AIAA Paper 1991-0646. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Green, J. E. 1970a Interactions between shock waves and turbulent boundary layers. Prog. Aerosp. Sci. 11, 235340.CrossRefGoogle Scholar
Green, J. E. 1970b Reflexion of an oblique shock wave by a turbulent boundary layer. J. Fluid Mech. 40 (1), 8195.CrossRefGoogle Scholar
Gross, A., Little, J. C. & Fasel, H. F.2018 Numerical investigation of shock wave turbulent boundary layer interactions. In 2018 AIAA Aerospace Sciences Meeting. AIAA Paper 2018-1807. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Gruhn, P. & Gülhan, A. 2011 Experimental investigation of a hypersonic inlet with and without sidewall compression. J. Propul. Power 27 (3), 718729.CrossRefGoogle Scholar
Jones, C., Clifford, C., Bolton, J. T., Thurow, B. S., Mears, L. & Alvi, F. S.2017 Preliminary plenoptic PIV results for volumetric measurements of shock wave-boundary layer interactions. In 33rd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. AIAA Paper 2017-4065. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Kawai, S., Shankar, S. K. & Lele, S. K. 2010 Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J. Comput. Phys. 229 (5), 17391762.CrossRefGoogle Scholar
Knight, D. D., Badekast, D., Horstman, C. & Settles, G. S. 1992a Quasiconical flowfield structure of the three-dimensional single fin interaction. AIAA J. 30 (12), 28092816.CrossRefGoogle Scholar
Knight, D. D., Horstman, C. & Bogdonoff, S. 1992b Structure of supersonic turbulent flow past a swept compression corner. AIAA J. 30 (4), 890896.CrossRefGoogle Scholar
Knight, D. D., Yan, H., Panaras, A. G. & Zheltovodov, A. 2003 Advances in CFD prediction of shock wave turbulent boundary layer interactions. Prog. Aerosp. Sci. 39, 121184.CrossRefGoogle Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.CrossRefGoogle Scholar
Mears, L., Arora, N. & Alvi, F. S.2018 Introducing controlled perturbations in a 3-D swept shock boundary layer interaction. In 2018 AIAA Aerospace Sciences Meeting. AIAA Paper 2018-2076. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Miller, D. S. & Wood, R. M. 1984 Leeside flows over delta wings at supersonic speeds. J. Aircraft 21 (9), 680686.CrossRefGoogle Scholar
Morgan, B., Duraisamy, K., Nguyen, N., Kawai, S. & Lele, S. K. 2013 Flow physics and RANS modelling of oblique shock/turbulent boundary layer interaction. J. Fluid Mech. 729, 231284.CrossRefGoogle Scholar
Mullenix, N. & Gaitonde, D. V.2011 A bandwidth and order optimized WENO interpolation scheme for compressible turbulent flows. In 49th AIAA Aerospace Sciences Meeting. AIAA Paper 2011-0366. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Nguyen, T., Behr, M., Reinartz, B., Hohn, O. & Gülhan, A. 2013 Effects of sidewall compression and relaminarization in a scramjet inlet. J. Propul. Power 29 (3), 628638.CrossRefGoogle Scholar
Nichols, J. W., Larsson, J., Bernardini, M. & Pirozzoli, S. 2017 Stability and modal analysis of shock/boundary layer interactions. Theor. Comput. Fluid Dyn. 31, 3350.CrossRefGoogle Scholar
Panaras, A. G. 1996 Review of the physics of swept-shock/boundary layer interactions. Prog. Aerosp. Sci. 32, 173244.CrossRefGoogle Scholar
Piponniau, S., Dussauge, J. P., Debiève, J. F. & Dupont, P. 2009 A simple model for low-frequency unsteadiness in shock-induced separation. J. Fluid Mech. 629, 87108.CrossRefGoogle Scholar
Pirozzoli, S., Larsson, J., Nichols, J. W., Bernardini, M., Morgan, B. E. & Lele, S. K. 2010 Analysis of unsteady effects in shock/boundary layer interactions. In Center for Turbulence Research Proceedings of the Summer Program 2010, pp. 153164. Center for Turbulence Research, Stanford University.Google Scholar
Plotkin, K. J. 1975 Shock wave oscillation driven by turbulent boundary layer fluctuations. AIAA J. 13 (8), 10361040.CrossRefGoogle Scholar
Poggie, J. 2019 Effect of forcing on a supersonic compression ramp flow. AIAA J. 57 (9), 37653772.CrossRefGoogle Scholar
Poggie, J., Bisek, N. J. & Gosse, R. 2015 Resolution effects in compressible, turbulent boundary layer simulations. Comput. Fluids 120, 5769.CrossRefGoogle Scholar
Poggie, J. & Porter, K. M. 2019 Flow structure and unsteadiness in a highly confined shock-wave–boundary-layer interaction. Phys. Rev. F 4 (2), 024602.Google Scholar
Porter, K. M. & Poggie, J. 2019 Selective upstream influence on the unsteadiness of a separated turbulent compression ramp flow. Phys. Fluids 31 (1), 016104.CrossRefGoogle Scholar
Priebe, S. & Martín, M. P. 2012 Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. J. Fluid Mech. 699, 149.CrossRefGoogle Scholar
Priebe, S., Tu, J. H., Rowley, C. W. & Martín, M. P. 2016 Low-frequency dynamics in a shock-induced separated flow. J. Fluid Mech. 807, 441477.CrossRefGoogle Scholar
Rabey, P. K., Jammy, S. P., Bruce, P. J. K. & Sandham, N. D. 2019 Two-dimensional unsteadiness map of oblique shock wave/boundary layer interaction with sidewalls. J. Fluid Mech. 871, R4.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54 (02), 263288.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.CrossRefGoogle Scholar
Schmisseur, J. D. & Dolling, D. S.1992 Unsteady separation in sharp fin-induced shock wave/turbulent boundary layer interaction at Mach 5. In 30th Aerospace Sciences Meeting. AIAA Paper 1992-0748. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Schmisseur, J. D. & Dolling, D. S. 1994 Fluctuating wall pressures near separation in highly swept turbulent interactions. AIAA J. 32 (6), 11511157.CrossRefGoogle Scholar
Schmisseur, J. D. & Gaitonde, D. V. 2001 Numerical investigation of strong crossing shock-wave/turbulent boundary-layer interactions. AIAA J. 39 (9), 17421749.CrossRefGoogle Scholar
Settles, G. S., Degrez, G., Knight, D. D., Dolling, D. S., Delery, J. M., Vandromme, D. & Simeonides, G.1993 Special course on shock-wave/boundary-layer interactions in supersonic and hypersonic flows. Tech. Rep., NATO Advisory Group for Aerospace Reserach and Development, AGARD-R-792.Google Scholar
Settles, G. S. & Dolling, D. S. 1986 Swept shock wave/boundary-layer interactions. In Progress in Astronautics and Aeronautics: Tactical Missile Aerodynamics (ed. Nielsen, J. N. & Hemsch, M. J.), vol. 104, pp. 297379. AIAA.Google Scholar
Settles, G. S. & Dolling, D. S.1990 Swept shock/boundary-layer interactions-tutorial and update. In 28th Aerospace Sciences Meeting. AIAA Paper 1990-0375. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Settles, G. S. & Kimmel, R. L. 1986 Similarity of quasiconical shock wave/turbulent boundary-layer interactions. AIAA J. 24 (1), 4753.CrossRefGoogle Scholar
Smits, A. J. & Dussauge, J. P. 2006 Turbulent Shear Layers in Supersonic Flow. Springer Science and Business Media.Google Scholar
Souverein, L. J., Dupont, P., Debiève, J. F., Van Oudheusden, B. W. & Scarano, F. 2010 Effect of interaction strength on unsteadiness in shock-wave-induced separations. AIAA J. 48 (7), 14801493.CrossRefGoogle Scholar
Souverein, L. J., Van Oudheusden, B. W., Scarano, F. & Dupont, P. 2009 Application of a dual-plane particle image velocimetry (dual-PIV) technique for the unsteadiness characterization of a shock wave turbulent boundary layer interaction. Meas. Sci. Technol. 20 (7), 074003.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Timme, S.2019 Global shock buffet instability on NASA common research model. In 2019 AIAA Science and Technology Forum and Exposition. AIAA Paper 2019-0037. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2009 Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23, 79107.CrossRefGoogle Scholar
Touber, E. & Sandham, N. D. 2011 Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. J. Fluid Mech. 671, 417465.CrossRefGoogle Scholar
Vanstone, L. & Clemens, N. T. 2019 Proper orthogonal decomposition analysis of swept-ramp shock-wave/boundary-layer unsteadiness at Mach 2. AIAA J. 57 (8), 33953409.CrossRefGoogle Scholar
Vanstone, L., Musta, M. N., Seckin, S. & Clemens, N. T. 2018 Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. J. Fluid Mech. 841, 127.CrossRefGoogle Scholar
Vanstone, L., Saleem, M., Seckin, S. & Clemens, N. T.2016 Effect of upstream boundary layer on unsteadiness of swept-ramp shock/boundary layer interactions at Mach 2. In 54th AIAA Aerospace Sciences Meeting. AIAA Paper 2016-0076. American Institute of Aeronautics and Astronautics.CrossRefGoogle Scholar
Visbal, M. R. & Gaitonde, D. V. 2002 On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181 (1), 155185.CrossRefGoogle Scholar
Xiang, X. & Babinsky, H. 2019 Corner effects for oblique shock wave/turbulent boundary layer interactions in rectangular channels. J. Fluid Mech. 862, 10601083.CrossRefGoogle Scholar
Zheltovodov, A. A. & Knight, D. D. 2011 Ideal-gas shock wave–turbulent boundary-layer interactions in supersonic flows and their modeling: three-dimensional interactions. In Shock Wave–Boundary-Layer Interactions (ed. Babinsky, H. & Harvey, J. K.), pp. 202258. Cambridge University Press.CrossRefGoogle Scholar