Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-19T01:13:41.905Z Has data issue: false hasContentIssue false

Dynamics of ideal fluid flows over an uneven bottom

Published online by Cambridge University Press:  21 April 2006

Eugene S. Benilov
Affiliation:
P. P. Shirshov Institute of Oceanology, Krasikova 23, Moscow 117218, USSR

Abstract

Two problems of the stability of ideal fluid flows over an uneven bottom are considered. The first is the study of stratified flow with a ‘rigid lid’. We use the method of multiple scales to derive an equation describing the evolution of internal waves corresponding to different modes and wave vectors. For the case of sinusoidal bottom irregularities we have constructed a solution describing the increase in time of the internal wave field - this proves the instability of the basic flow. The phenomenon is interpreted as a result of interaction (mutual generation) of internal waves with energies of opposite signs. Our consideration is based on the Hamiltonian approach which enables us to prove in the most simple way the existence of waves carrying negative energy. The case of random (not sinusoidal) bottom irregularities is also studied. Using the kinetic equation for the amplitudes of internal waves derived in the paper, we have established that the basic flow remains unstable as well. In the second part of the paper we consider the homogeneous flows with a free upper boundary. It is shown that this problem can be reduced to the previous one, with the only difference being that the role of unstable perturbations is now played by the surface (not internal) gravity waves. The Hamiltonian approach is consistently applied and allows us to take into account the nonlinearity of waves.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benilov, E. S. 1985 Dokl. Akad. Nauk SSSR (Geophys. Dokl.) 285, 447450.
Benilov, E. S. & Chernyak, E. L. 1985 Dokl. Akad. Nauk SSSR (Sov. Phys. Dokl.), 285, 281285.
Benjamin, T. B. & Feir, J. E. 1967 J. Fluid Mech. 27, 417430.
Booker, J. B. & Bretherton, F. P. 1967 J. Fluid Mech. 27, 513539.
Charney, J. G. & Flierl, G. B. 1981 In Evolution of Physical Oceanography. Scientific surveys in honor of Henry Stommel (ed. B. A. Warren & C. Wunsch), 504549. MIT Press.
Craik, A. D. 1969 Wave Interaction and Fluid Flows. Cambridge University Press.
Hasselmann, K. 1962 J. Fluid Mech. 12, 481500.
Hasselmann, K. 1963 J. Fluid Mech. 15, 273281.
Krauss, W. 1966 Methoden und Ergebnisse der Theoretischeh Ozeanographie. 2: Interne Wellen. Berlin: Bortraeger.
Lavrova, O. Yu. 1983 Izv. Akad. Nauk SSSR, Fiz. atm. okeana, 19, 10681074.
Miles, J. W. 1961 J. Fluid Mech. 10, 496509.
Miropol'Sky, Yu. Z. 1981 Dynamics of Internal Gravity Waves in the Ocean. Leningrad: Gidrometeoizdat (in Russian).
Nayfeh, A. H. 1973 Perturbation Methods. Wiley.
Scorer, R. S. 1978 Environmental Aerodynamics. Chichester: Horwood.
Vorovonovich, A. G. 1979 Izv. Akad. Nauk SSSR, Fiz. Atm. Okeana 15, 8291.
Vorovonovich, A. G. & Rybak, S. A. 1978 Dokl. Akad. Nauk SSSR (Geophys. Dokl.), 239, 14571460.Google Scholar
Yih, C.-S. 1976 Adv. Appl. Mech. 16, 369419.
Yuen, H. C. & Lake, B. M. 1982 Adv. Appl. Mech. 22, 67229.
Zakharov, V. E. 1965 Prikl. Mekh. Tekh. Fiz. N4, 6267.
Zakharov, V. E. 1968 Prikl. Mekh. Tekh. Fiz. N2, 8691.
Zakharov, V. E. 1974 Izv. VUZ'ov, Radiofizika 17, 431453 (in Russian).
Zakharov, V. E. & Filonenko, N. N. 1966 Dokl. Akad. Nauk SSSR (Sov. Phys. Dokl.), 170, 12921295.Google Scholar
Zakharov, V. E. & Filonenko, N. N. 1967 Prikl. Mekh. Tekh. Fiz. N5, 6267.