Hostname: page-component-5cf477f64f-xc2pj Total loading time: 0 Render date: 2025-04-08T00:21:42.319Z Has data issue: false hasContentIssue false

Dynamics of floating droplets under the action of an inclined temperature gradient

Published online by Cambridge University Press:  17 March 2025

Alexander Nepomnyashchy
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel
Ilya Simanovskii*
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, 32000 Haifa, Israel
*
Corresponding author: Ilya Simanovskii, [email protected]

Abstract

The thermocapillary flows generated by an inclined temperature gradient in and around a floating droplet are studied in the framework of the lubrication approximation. Numerical simulations of nonlinear flow regimes are fulfilled. It is shown that under the action of Marangoni stresses, a droplet typically moves as a whole. It is found that an inclined temperature gradient can lead to the excitation of periodic oscillations. With an increase of the inclination of the temperature gradient, temporally quasi-periodic oscillations have been obtained. In a definite region of parameters, an inclined temperature gradient can suppress oscillations, changing the droplet’s shape. The diagram of regimes in the plane of longitudinal and transverse Marangoni numbers has been constructed. Bistability has been found.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buffone, C. 2019 Formation, stability and hydrothermal waves in evaporating liquid lenses. Soft Matt. 15 (9), 19701978.CrossRefGoogle ScholarPubMed
Craster, R.V. & Matar, O.K. 2006 On the dynamics of liquid lenses. J. Colloid Interface Sci. 303 (2), 503516.CrossRefGoogle ScholarPubMed
Davis, S.H. 1987 Thermocapillary instabilities. Annu. Rev. Fluid Mech. 19 (1), 403435.CrossRefGoogle Scholar
Fisher, L.S. & Golovin, A.A. 2005 Nonlinear stability analysis of a two-layer thin liquid film: dewetting and autophobic behavior. J. Colloid Interface Sci. 291 (2), 515528.CrossRefGoogle ScholarPubMed
Géoris, P., Hennenberg, M., Lebon, G. & Legros, J.C. 1999 Investigation of thermocapillary convection in a three-liquid-layer systems. J. Fluid Mech. 389, 209228.CrossRefGoogle Scholar
Ju, G., Yang, X., Li, L., Cheng, M. & Shi, F. 2019 Removal of oil spills through a self-propelled smart device. Chem. Asian J. 14 (14), 24352439.CrossRefGoogle ScholarPubMed
Kriegsmann, J.J. & Miksis, M.J. 2003 Steady motion of a drop along a liquid interface. SIAM J. Appl. Maths 64 (1), 1840.CrossRefGoogle Scholar
Labanieh, L., Nguyen, T.N., Zhao, W.A. & Kang, D.K. 2015 Floating droplet array: an ultrahigh-throughput device for droplet trapping, real time analysis and recovery. Micromachines-BASEL 60 (10), 14691482.CrossRefGoogle Scholar
Madruga, S., Perez-Garcia, C. & Lebon, G. 2003 Convective instabilities in two superposed horizontal liquid layers heated laterally. Phys. Rev. E 68 (4), 041607.CrossRefGoogle ScholarPubMed
Nepomnyashchy, A.A. & Simanovskii, I.B. 2007 Marangoni instability in ultrathin two-layer films. Phys. Fluids 19 (12), 122103.CrossRefGoogle Scholar
Nepomnyashchy, A.A. & Simanovskii, I.B. 2009a Dynamics of ultra-thin two-layer films under the action of inclined temperature gradients. J. Fluid Mech. 631, 165197.CrossRefGoogle Scholar
Nepomnyashchy, A.A. & Simanovskii, I.B. 2009b Instabilities and ordered patterns in nonisothermal ultrathin bilayer fluid films. Phys. Rev. Lett. 102 (16), 164501.CrossRefGoogle ScholarPubMed
Nepomnyashchy, A.A. & Simanovskii, I.B. 2010 Effect of gravity on the dynamics of non-isothermic ultra-thin two-layer films. J. Fluid Mech. 661, 131.CrossRefGoogle Scholar
Nepomnyashchy, A. & Simanovskii, I. 2012 Nonlinear Marangoni waves in a two-layer film in the presence of gravity. Phys. Fluids 24 (3), 032101.CrossRefGoogle Scholar
Nepomnyashchy, A. & Simanovskii, I. 2021 Droplets on the liquid substrate: Thermocapillary oscillatory instability. Phys. Rev. Fluids 6 (3), 034001.CrossRefGoogle Scholar
Nepomnyashchy, A.A., Simanovskii, I.B. & Braverman, L.M. 2001 Stability of thermocapillary flows with inclined temperature gradient. J. Fluid Mech. 442, 141155.CrossRefGoogle Scholar
Nepomnyashchy, A.A., Simanovskii, I.B. & Legros, J.C. 2012 Interfacial Convection in Multilayer Systems. second edn. Springer.CrossRefGoogle Scholar
Neumann, F. 1894 Vorlesungen über Die Theorie der Capillarität. Teubner.Google Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Pearson, J.R. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4 (5), 489500.CrossRefGoogle Scholar
Pototsky, A., Bestehorn, M., Merkt, D. & Thiele, U. 2005 Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys. 122 (22), 224711.CrossRefGoogle ScholarPubMed
Pototsky, A., Oron, A. & Bestehorn, M. 2019 Vibration-induced flotation of a heavy liquid drop on a lighter liquid film. Phys. Fluids 31 (8), 087101.CrossRefGoogle Scholar
Rybalko, S., Magome, N. & Yoshikawa, K. 2004 Forward and backward laser-guided motion of an oil droplet. Phys. Rev. E 70 (4), 046301.CrossRefGoogle ScholarPubMed
Scriven, L.E. & Sternling, C.V. 1964 On cellular convection driven by surface-tension gradients: effects of mean surface tension and surface viscosity. J. Fluid Mech. 19 (3), 321340.CrossRefGoogle Scholar
Shklyaev, O.E. & Nepomnyashchy, A.A. 2004 Thermocapillary flows under an inclined temperature gradient. J. Fluid Mech. 504, 99132.CrossRefGoogle Scholar
Simanovskii, I.B. & Nepomnyashchy, A.A. 1993 Convective Instabilities in Systems with Interface. Gordon and Breach.Google Scholar
Simanovskii, I.B. & Nepomnyashchy, A.A. 2006 Nonlinear development of oscillatory instability in a two-layer system under the combined action of buoyancy and thermocapillary effect. J. Fluid Mech. 555 (2006), 177.CrossRefGoogle Scholar
Sivashinsky, G.I. 1982 Large cells in nonlinear Marangoni convection. Physica D: Nonlinear Phenom. 4 (2), 227235.CrossRefGoogle Scholar
Smith, K.A. 1966 On convection instability induced by surface tension gradient. J. Fluid Mech. 24 (2), 401414.CrossRefGoogle Scholar
Smith, M.K. & Davis, S.H. 1983a Instabilities of dynamic thermocapillary liquid layers, Part 1. Convective Instabilities. J. Fluid Mech. 132, 119144.CrossRefGoogle Scholar
Smith, M.K. & Davis, S.H. 1983b Instabilities of dynamic thermocapillary liquid layers, Part 2. Surface-wave instabilities. J. Fluid Mech. 132, 145162.CrossRefGoogle Scholar
Song, C., Moon, J.K., Lee, K., Kim, K. & Pak, H.K. 2014 Breathing, crawling, budding, and splitting of a liquid droplet under laser heating. Soft Matt. 10 (15), 2679.CrossRefGoogle ScholarPubMed
Ueno, I., Kurosawa, T. & Kawamura, H. 2002 Thermocapillary convection in thin liquid layer with temperature gradient inclined to free surface, Heat Transfer 2002. In Proceedings of 12th National Heat Transfer Conference(Grenoble, France), pp. 129. Aug. 18-23, 2002.Google Scholar
Van Hook, S.J., Schatz, M.F., McCormick, W.D., Swift, J.B. & Swinney, H.L. 1995 Long-wavelength instability in surface-tension-driven Bénard convection. Phys. Rev. Lett. 75 (24), 43974400.CrossRefGoogle ScholarPubMed
Van Hook, S.J., Schatz, M.F., Swift, J.B., McCormick, W.D. & Swinney, H.L. 1997 Long-wavelength instability in surface-tension-driven Bénard convection. J. Fluid Mech. 345, 4578.CrossRefGoogle Scholar
Yakshi-Tafti, E., Cho, H.J. & Kumar, R. 2010 Droplet actuation on a liquid layer due to thermocapillary motion: shape effect. Appl. Phys. Lett. 96 (26), 264101.CrossRefGoogle Scholar
Yamini, Y., Rezazadeh, M. & Seidi, S. 2019 Liquid-phase microextraction - the different principles and configurations. TRAC - Trends Anal. Chem. 112, 264.CrossRefGoogle Scholar