Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-08T16:30:06.277Z Has data issue: false hasContentIssue false

Dynamics of falling films on the outside of a vertical rotating cylinder: waves, rivulets and dripping transitions

Published online by Cambridge University Press:  26 October 2017

Manuel Rietz*
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
Benoit Scheid
Affiliation:
TIPs, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium
François Gallaire
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, 1015 Lausanne, Switzerland
Nicolas Kofman
Affiliation:
Laboratory of Fluid Mechanics and Instabilities, EPFL, 1015 Lausanne, Switzerland
Reinhold Kneer
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
Wilko Rohlfs
Affiliation:
Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, 52056 Aachen, Germany
*
Email address for correspondence: [email protected]

Abstract

Falling liquid films on the underside of a plate or on the outside of a rotating cylinder are subject to a destabilizing body force. The evolution of the film topology is determined by interactions between the Kapitza and the Rayleigh–Taylor instability, leading to complex patterning of the film surface and eventually fluid detachment from the substrate. This study experimentally investigates the evolution of the surface topology for a film on the outside of a vertical rotating cylinder of large radius. Shear at the liquid/air interface is suppressed through an outer, co-rotating cylinder. The film evolution is captured through high speed visualization in dependence of the control parameters, namely Reynolds number and rotation frequency. An increasing influence of the Rayleigh–Taylor instability for an increasing destabilizing body force (increasing rotational speed of the cylinder) is most notably observed in the form of a decreasing inception length of rivulet structures dominating the film topology. Wavelength as well as inception length of rivulets match the predictions from linear stability analysis of the classical Rayleigh–Taylor problem. In this context, experimental and supporting numerical results suggest that the emergence of rivulets occurs for any non-zero value of the destabilizing body force after a given evolution length that decreases with increasing body force. Fluid detachment from the substrate is found to be intimately related to the existence of rivulet structures. In dependence of the control parameters, detaching droplets are either observed as a result of interactions of solitary pulses of varying phase speed on rivulets, directly after destabilization of two-dimensional waves into rivulets or immediately at the fluid inlet. By comparison to the convective/absolute instability transition predicted by linear stability analysis of an integral boundary layer formulation of the problem in question, it is shown that the prediction of a predominant dripping mechanism lies beyond the scope of linear analysis.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdelall, F. F., Abdel-Khalik, S. I., Sadowski, D. L., Shin, S. & Yoda, M. 2006 On the Rayleigh–Taylor instability for confined liquid films with injection through the bounding surfaces. Intl J. Heat Mass Transfer 49, 15291546.CrossRefGoogle Scholar
Alekseenko, S. V., Nakoryakov, V. E. & Pokusaev, B. G. 1994 Wave Flow of Liquid Films. Begell House.CrossRefGoogle Scholar
Babchin, A. J., Frenkel, A. L., Levich, B. G. & Sivashinsky, G. I. 1983 Nonlinear saturation of Rayleigh–Taylor instability in thin films. Phys. Fluids 26, 3159.CrossRefGoogle Scholar
Balestra, G., Brun, P.-T. & Gallaire, F. 2016 Rayleigh–Taylor instability under curved substrates: an optimal transient growth analysis. Phys. Rev. Fluids 1, 083902.CrossRefGoogle Scholar
Benjamin, T. B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2, 554573.CrossRefGoogle Scholar
Brauner, N. & Maron, D. M. 1983 Modeling of wavy flow in inclined thin films. Chem. Engng Sci. 38, 775788.CrossRefGoogle Scholar
Brun, P.-T., Damiano, A., Rieu, P., Balestra, G. & Gallaire, F. 2015 Rayleigh–Taylor instability under an inclined plane. Phys. Fluids 27, 084107.CrossRefGoogle Scholar
Chakraborty, S., Nguyen, P.-K., Ruyer-Quil, C. & Bontozoglou, V. 2014 Extreme solitary waves on falling liquid films. J. Fluid Mech. 745, 564591.CrossRefGoogle Scholar
Chang, H.-C. & Demekhin, E. 2002 Complex Wave Dynamics on Thin Films. Elsevier.Google Scholar
Chen, C. I., Chen, C. K. & Yang, Y. T. 2004 Perturbation analysis to the nonlinear stability characterization of thin condensate falling film on the outer surface of a rotating vertical cylinder. Intl J. Heat Mass Transfer 47, 19371951.CrossRefGoogle Scholar
Cheng, S. I. & Cordero, J. 1963 Droplet formation from a liquid film over a rotating cylinder. AIAA J. 1, 25972601.CrossRefGoogle Scholar
Chinnov, E. A. & Abdurakipov, S. S. 2012 Thermal entry length in a falling liquid film at high Reynolds numbers. High Temp. 50, 400406.CrossRefGoogle Scholar
Dávalos-Orozco, L. A. & Ruiz-Chavarría, G. 1993 Hydrodynamic instability of a fluid layer flowing down a rotating cylinder. Phys. Fluids 5, 2390.CrossRefGoogle Scholar
Dietze, G. F., Al-Sibai, F. & Kneer, R. 2009 Experimental study of flow separation in laminar falling liquid films. J. Fluid Mech. 637, 73104.CrossRefGoogle Scholar
Dietze, G. F., Leefken, A. & Kneer, R. 2008 Investigation of the backflow phenomenon in falling liquid films. J. Fluid Mech. 595, 435459.CrossRefGoogle Scholar
Dietze, G. F., Rohlfs, W., Nährich, K. & Scheid, B. 2014 Three-dimensional flow structures in laminar falling liquid films. J. Fluid Mech. 743, 75123.CrossRefGoogle Scholar
Duprat, C., Ruyer-Quil, C., Kalliadasis, S. & Giorgiutti-Dauphiné, F. 2007 Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett. 98, 244502.CrossRefGoogle Scholar
Eisenklam, P. 1964 On ligament formation from spinning discs and cups. Chem. Engng J. S 19, 693694.CrossRefGoogle Scholar
Fermigier, M., Limat, L., Wesfreid, J. E., Boudinet, P. & Quillet, C. 1992 Two-dimensional patterns in Rayleigh–Taylor instability of a thin layer. J. Fluid Mech. 236, 349383.CrossRefGoogle Scholar
Fraser, R. P., Dombrowski, N. & Routley, J. H. 1963 The filfilm of lliquid by spinning cups. Chem. Engng Sci. 18, 323337.CrossRefGoogle Scholar
Indeikina, A., Veretennikov, I. & Chang, H.-C. 1997 Drop fall-off from pendent rivulets. J. Fluid Mech. 338, 173201.CrossRefGoogle Scholar
Kalliadasis, S., Ruyer-Quil, C., Scheid, B. & Velarde, M. 2012 Falling Liquid Films. Spinger.CrossRefGoogle Scholar
Kofman, N., Mergui, S. & Ruyer-Quil, C. 2014 Three-dimensional instabilities of quasi-solitary waves in a falling liquid film. J. Fluid Mech. 757, 854887.CrossRefGoogle Scholar
Langley, K. R., Maynes, D. & Truscott, T. T. 2015 Eggs and milk: spinning spheres partially immersed in a liquid bath. Phys. Fluids 27, 032102.CrossRefGoogle Scholar
Lel, V. V., Kellermann, A., Dietze, G., Kneer, R. & Pavlenko, A. N. 2008 Investigations of the marangoni effect on the regular structures in heated wavy liquid films. Exp. Fluids 44, 341354.CrossRefGoogle Scholar
Lin, T.-S., Kondic, L. & Filippov, A. 2012 Thin films flowing down inverted substrates: three-dimensional flow. Phys. Fluids 24, 022105.CrossRefGoogle Scholar
Malamataris, N. A. & Balakotaiah, V. 2008 Flow structure underneath the large amplitude waves of a vertically falling film. AIC 54, 17251740.Google Scholar
Rietz, M., Rohlfs, W., Kneer, R. & Scheid, B. 2015 Experimental investigation of thermal structures in regular three-dimensional falling films. Phys. J. Special Topics 224, 355368.CrossRefGoogle Scholar
Rohlfs, W.2015 Wave characteristics of falling liquid films under the influence of positive and negative inclination or electrostatic forces. PhD thesis, RWTH Aachen University.Google Scholar
Rohlfs, W., Pischke, P. & Scheid, B. 2017 Hydrodynamic waves in films flowing under an inclined plane. Phys. Rev. Fluids 2, 044003.CrossRefGoogle Scholar
Rohlfs, W. & Scheid, B. 2015 Phase diagram for the onset of circulating waves and flow reversal in inclined falling films. J. Fluid Mech. 763, 322351.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15, 357369.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2002 Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids 14, 170183.CrossRefGoogle Scholar
Scheid, B., Kalliadasis, S., Ruyer-Quil, C. & Colinet, P. 2008a Interaction of three-dimensional hydrodynamic and thermocapillary instabilities in film flows. Phys. Rev. E 78, 066311.Google ScholarPubMed
Scheid, B., Kalliadasis, S., Ruyer-Quil, C. & Colinet, P. 2008b Spontaneous channeling of solitary pulses in heated-film flows. Eur. Phys. Lett. 84, 64002.CrossRefGoogle Scholar
Scheid, B., Kofman, N. & Rohlfs, W. 2016 Critical inclination for absolute/convective instability transition in inverted falling films. Phys. Fluids 28, 044107.CrossRefGoogle Scholar
Scheid, B., Ruyer-Quil, C. & Manneville, P. 2006 Wave patterns in film flows: modelling and three-dimensional waves. J. Fluid Mech. 562, 183222.CrossRefGoogle Scholar
Sharp, D. H. 1984 An overview of Rayleigh–Taylor instability. Physica D 12, 318.Google Scholar
Taylor, G. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. Proc. R. Soc. Lond. A 201, 192196.Google Scholar
Trinh, P. H., Kim, K., Hammoud, N., Howell, P. D., Chapman, S. J. & Stone, H. A. 2014 Curvature suppresses the Rayleigh–Taylor instability. Phys. Fluids 26, 051704.CrossRefGoogle Scholar
Vlachogiannis, M., Samandas, A., Leontidis, V. & Bontozoglou, V. 2010 Effect of channel width on the primary instability of inclined film flow. Phys. Fluids 22, 012106.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6, 321334.CrossRefGoogle Scholar