Hostname: page-component-f554764f5-nt87m Total loading time: 0 Render date: 2025-04-13T23:59:39.662Z Has data issue: false hasContentIssue false

Dynamics of a film bounded by a pinned contact line

Published online by Cambridge University Press:  07 April 2025

J. Eggers*
Affiliation:
School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, UK
M.A. Fontelos
Affiliation:
Instituto de Ciencias Matemáticas, (ICMAT, CSIC-UAM-UCM-UC3M) C/ Serrano 123, 28006, Madrid, Spain
*
Corresponding author: J. Eggers, [email protected]

Abstract

We consider the dynamics of a liquid film with a pinned contact line (for example, a drop), as described by the one-dimensional, surface-tension-driven thin-film equation $h_t + (h^n h_{xxx})_x = 0$, where $h(x,t)$ is the thickness of the film. The case $n=3$ corresponds to a film on a solid substrate. We derive an evolution equation for the contact angle $\theta (t)$, which couples to the shape of the film. Starting from a regular initial condition $h_0(x)$, we investigate the dynamics of the drop both analytically and numerically, focusing on the contact angle. For short times $t\ll 1$, and if $n\ne 3$, the contact angle changes according to a power law $\displaystyle t^{\frac {n-2}{4-n}}$. In the critical case $n=3$, the dynamics become non-local, and $\dot {\theta }$ is now of order $\displaystyle {\rm{e}}^{-3/(2t^{1/3})}$. This implies that, for $n=3$, the standard contact line problem with prescribed contact angle is ill posed. In the long time limit, the solution relaxes exponentially towards equilibrium.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Bender, C.M. & Orszag, S.A. 1978 Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York.Google Scholar
Bernis, F., Hulshof, J. & King, A.C. 2000 Dipoles and similarity solutions of the thin film equation in the half-line. Nonlinearity 13 (2), 413439.Google Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.CrossRefGoogle Scholar
Bowen, M. & King, A.C. 2001 Asymptotic behaviour of the thin film equation in bounded domains. Eur. J. Appl. Math. 12 (2), 135157.Google Scholar
Braaksma, B.L.J. 1962 Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15, 239.Google Scholar
Brezis, H. 2010 Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer.Google Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.Google Scholar
Dupont, T.F., Goldstein, R.E., Kadanoff, L.P. & Zhou, S.-M. 1993 Finite-time singularity formation in Hele-Shaw systems. Phys. Rev. E 47 (6), 41824196.CrossRefGoogle ScholarPubMed
Dussan, V., E., B. & Chow, R.T.-P. 1983 On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. J. Fluid Mech. 137, 129.CrossRefGoogle Scholar
Dussan, V., E., B. & Davis, S.H. 1974 On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 65 (1), 7195.Google Scholar
Eggers, J. & Fontelos, M.A. 2015 Singularities: Formation, Structure, and Propagation. Cambridge University Press.Google Scholar
Giacomelli, L., Knüpfer, H. & Velázquez, J.J.L. 2023 Private communication.Google Scholar
Gnann, M., Giacomelli, L., Lienstromberg, C., Hulshof, J. & Sonner, S. 2023 Analysis and numerics of nonlinear pdes: degeneracies & free boundaries. Lorentz center, Leiden.Google Scholar
Graña-Otero, J. & Parra Fabián, I.E. 2019 Contact line depinning from sharp edges. Phys. Rev. Fluids 4 (11), 114001.CrossRefGoogle Scholar
Hong, S.H., Fontelos, M.A. & Hwang, H.J. 2016 The contact line of an evaporating droplet over a solid wedge and the pinned-unpinned transition. J. Fluid Mech. 791, 519538.Google Scholar
Huh, C. & Scriven, L.E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.Google Scholar
Kulkarni, Y., Fullana, T. & Zaleski, S. 2023 Stream function solutions for some contact line boundary conditions: Navier slip, super slip and the generalized Navier boundary condition. Proc. R. Soc. Lond. A: Math. Phys. Engng Sci. 479 (2278), 20230141.Google Scholar
't Mannetje, D., Ghosh, S., Lagraauw, R., Otten, S., Pit, A., Berendsen, C., Zeegers, J., van den Ende, D. & Mugele, F. 2014 Trapping of drops by wetting defects. Nat. Commum. 5 (1), 3559.CrossRefGoogle ScholarPubMed
Olver, F.W.J., Lozier, D.W., Boisvert, R.F. & Clark, C.W. 2010 NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge. Available at: http://dlmf.nist.gov/.Google Scholar
Oron, A., Davis, S.H. & Bankoff, S.G. 1997 Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69 (3), 931980.CrossRefGoogle Scholar
Quéré, D., Lafuma, A. & Bico, J. 2003 Slippy and sticky microtextured solids. Nanotechnology 14, 1109.Google Scholar
Sakakeeny, J. & Ling, Y. 2021 Numerical study of natural oscillations of supported drops with free and pinned contact lines. Phys. Fluids 33 (6), 062109.Google Scholar
Slater, L.J. 1966 Generalized Hypergeometric Functions. Cambridge University Press.Google Scholar
Stauber, J.M., Wilson, S.K., Duffy, B.R. & Sefiane, K. 2014 On the lifetimes of evaporating droplets. J. Fluid Mech. 744, R2.Google Scholar
Stone, H.A. & Duprat, C. 2016 Fluid-Structure Interactions in Low-Reynolds-Number Flows. In RSC Soft Matter Series, chap. 3, pp. 7899. Royal Society of Chemistry.Google Scholar
Wilson, S.K. & D’Ambrosio, H.-M. 2023 Evaporation of sessile droplets. Annu. Rev. Fluid Mech. 55 (1), 481509.Google Scholar
Zhao, Y. 2014 Moving contact line problem: advances and perspectives. Theor. Appl. Mech, Lett. 4 (3), 034002.CrossRefGoogle Scholar