Published online by Cambridge University Press: 10 December 2001
This article continues an exploration of instabilities of jets in two-dimensional, inviscid fluid on the beta-plane. At onset, for particular choices of the physical parameters, the normal modes responsible for instability have critical levels that coalesce along the axis of the jet. Matched asymptotic expansion (critical layer theory) is used to derive a reduced model describing the dynamics of these modes. Because the velocity profile is locally parabolic in the vicinity of the critical levels the dynamics is richer than in standard critical layer problems. The model captures the inviscid saturation of unstable modes, the excitation of neutral Rossby waves, and the decay of disturbances when there are no discrete normal modes. Inviscid saturation occurs when the vorticity distribution twists up into vortical structures that take the form of either a pair of ‘cat's eye’ patterns straddling the jet axis, or a single row of vortices. The addition of weak viscosity destroys these cat's eye structures and causes the critical layer to spread diffusively. The results are compared with numerical simulations of the governing equations.