Hostname: page-component-f554764f5-fr72s Total loading time: 0 Render date: 2025-04-14T00:36:33.220Z Has data issue: false hasContentIssue false

Dynamics and 3-D instability of flow induced by the dielectric-barrier-discharge plasma actuator in an initially quiescent medium

Published online by Cambridge University Press:  10 April 2025

Bal Krishan Mishra
Affiliation:
National Wind Tunnel Facility, IIT Kanpur, Kanpur, UP-208016, India Department of Mechanical Engineering, IIT Kanpur, Kanpur, UP-208016, India
Pradipta K. Panigrahi*
Affiliation:
Department of Mechanical Engineering, IIT Kanpur, Kanpur, UP-208016, India
*
Coresponding author: Pradipta K. Panigrahi, [email protected]

Abstract

A typical dielectric-barrier-discharge plasma actuator operating in burst mode generates periodic vortices resembling the starting vortex. This paper presents the three-dimensional (3-D) characteristics and instability mechanism of these vortices. The experimental investigation is carried out using smoke visualisation and time-resolved particle image velocimetry techniques in three orthogonal measurement planes. The size of the vortices decreases with an increase in burst signal frequency, $ f_{b}$, at a constant duty cycle, $ \alpha$. At higher burst frequencies, dipole vortices are formed due to the roll-up of the wall boundary layer. The angle of travel also decreases with an increase in $ f_{b}$. The evolution of $ \lambda _{2}$-criterion clearly demonstrates the vortex merging of co-rotating vortices. The vortex merging occurs at a critical ratio $ a_{c}/l_{c}$ of core size, $ a_{c}$, and separation distance, $ l_{c}$, equal to $ 0.22\pm 0.01$ which is close to $ a_{c}/l_{c} = 0.24\pm 0.01$ reported by Meunier et al. (Phys. Fluids,vol.14, 2002, pp. 2757–2766) for merging of a pair of equal two-dimensional co-rotating vortices. The periodic vortices are self-similar in nature and the vorticity distribution inside their core region follows the Lamb–Oseen vortex model. Cell structures form in the spanwise direction, which develops wave-like behaviour with an increase in burst frequency. Subsequently, these cell-like structures separate from each other, whose size and spacing correlate well with that of vorticity patches. The alternating sign of vorticity indicates that the circular cells have rotational motion in opposite sense with respect to each other. These cells grow downstream and appear in pairs of counter-rotating vortices (vortex dipole) akin to mushroom-like structures. At low values of $ \alpha$ and $ f_{b}$, the periodic vortex is subjected to a very weak strain and centrifugal instability dominates. The vortices are subjected to a higher strain at elevated burst frequencies, leading to the elliptic instability phenomenon similar to that observed in counter-rotating (Leweke & Williamson, J. Fluid Mech. 1998, vol. 360, pp. 85–119) and co-rotating (Meunier & Leweke, J. Fluid Mech.2005, vol. 533, pp. 125–159) vortex pair generated in water. The present experimental results based on the cross-cut visualisation, Galilean streamlines and vorticity decomposition confirm the role of the instability mechanism on the 3-D vortical structures generated by the dielectric-barrier-discharge plasma actuator.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, A. & Prasad, A.K. 2002 Organizational modes of large-scale vortices in an axisymmetric turbulent jet. Flow Turbul. Combust. 68 (4), 359377.CrossRefGoogle Scholar
Allen, J. & Auvity, B. 2002 Interaction of a vortex ring with a piston vortex. J. Fluid Mech. 465, 353378.CrossRefGoogle Scholar
Allen, J. & Lopez, J.J. 2007 Transition processes for junction vortex flow. J. Fluid Mech. 585, 457467.CrossRefGoogle Scholar
Allen, J.J & Chong, M. 2000 Vortex formation in front of a piston moving through a cylinder. J. Fluid Mech. 416, 128.CrossRefGoogle Scholar
Allen, J.J & Naitoh, T. 2007 Scaling and instability of a junction vortex. J. Fluid Mech. 574, 123.CrossRefGoogle Scholar
Bayly, B. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys. Fluids 31 (1), 5664.CrossRefGoogle Scholar
Benard, N., Balcon, N. & Moreau, E. 2009 Jet flow control by dielectric barrier discharge: Excitation by axisymmetric and flapping modes. In 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Benard, N., Jolibois, J., Forte, M., Touchard, G. & Moreau, E. 2007 Control of an axisymmetric subsonic air jet by plasma actuator. Exp. Fluids 43 (4), 603616.CrossRefGoogle Scholar
Benard, N. & Moreau, E. 2010 Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D: Appl. Phys. 43 (14), 145201.CrossRefGoogle Scholar
Cai, J., Tian, Y., Meng, X., Han, X., Zhang, D. & Hu, H. 2017 An experimental study of icing control using DBD plasma actuator. Exp. Fluids 58 (8), 18.CrossRefGoogle Scholar
Cantwell, B. J. 1986 Viscous starting jets. J. Fluid Mech. 173, 159189.CrossRefGoogle Scholar
Cerretelli, C. & Williamson, C. 2003 The physical mechanism for vortex merging. J. Fluid Mech. 475, 4177.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Lim, T. 2015 Leapfrogging of multiple coaxial viscous vortex rings. Phys. Fluids 27 (3), 031702.CrossRefGoogle Scholar
Conlon, B.P. & Lichter, S. 1995 Dipole formation in the transient planar wall jet. Phys. Fluids 7 (5), 9991014.CrossRefGoogle Scholar
Corke, T.C., Enloe, C. & Wilkinson, S.P. 2010 Dielectric barrier discharge plasma actuators for flow control*. Annu. Rev. Fluid Mech. 42 (1), 505529.CrossRefGoogle Scholar
Corke, T.C., Post, M.L. & Orlov, D.M. 2007 SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Prog. Aerosp. Sci. 43 (7-8), 193217.CrossRefGoogle Scholar
Crow, S. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Daneshyar, H., Fuller, D. & Deckker, B. 1973 Vortex motion induced by the piston of an internal combustion engine. Intl J. Mech. Sci. 15 (5), 381386.CrossRefGoogle Scholar
Dong, L., Choi, K.-S. & Wang, Y. 2022 Plasma flow control of the tip vortices over a very low aspect-ratio wing. Phys. Fluids 34 (8), 087101.CrossRefGoogle Scholar
Duong, A.H., Corke, T.C. & Thomas, F.O. 2021 Characteristics of drag-reduced turbulent boundary layers with pulsed-direct-current plasma actuation. J. Fluid Mech. 915, A113.CrossRefGoogle Scholar
Emori, K., Kaneko, Y. & Nishida, H. 2022 Classification of flow-field patterns in burst-mode actuation of a dielectric-barrier-discharge plasma actuator. Phys. Fluids 34 (2), 023601.CrossRefGoogle Scholar
Greenblatt, D., Ben-Harav, A. & Mueller-Vahl, H. 2014 Dynamic stall control on a vertical-axis wind turbine using plasma actuators. AIAA J. 52 (2), 456462.CrossRefGoogle Scholar
Hehner, M.T., Coutinho, G., Pereira, S., Ricardo, B., Benard, N. & Kriegseis, J. 2023 On the interplay of body-force distributions and flow speed for dielectric-barrier discharge plasma actuators. J. Physics D: Appl. Phys. 56 (37), 375205.CrossRefGoogle Scholar
Hehner, M.T., Gatti, D., Kotsonis, M. & Kriegseis, J. 2022 Effects of actuation mode on plasma-induced spanwise flow oscillations. J. Phys. D: Appl. Phys. 55 (20), 205203.CrossRefGoogle Scholar
Hehner, M.T., Gatti, D. & Kriegseis, J. 2019 Stokes-layer formation under absence of moving parts–a novel oscillatory plasma actuator design for turbulent drag reduction. Phys. Fluids 31 (5), 051701.CrossRefGoogle Scholar
Hehner, M.T., Gatti, D., Mattern, P., Kotsonis, M. & Kriegseis, J. 2021 Beat-frequency-operated dielectric-barrier discharge plasma actuators for virtual wall oscillations. AIAA J. 59 (2), 763767.CrossRefGoogle Scholar
Hu, H., Meng, X., Cai, J., Zhou, W., Liu, Y. & Hu, H. 2020 Optimization of dielectric barrier discharge plasma actuators for icing control. J. Aircraft 57 (2), 383387.CrossRefGoogle Scholar
Humble, R.A., Craig, S.A., Vadyak, J., McClure, P.D., Hofferth, J.W. & Saric, W.S. 2013 Spatiotemporal structure of a millimetric annular dielectric barrier discharge plasma actuator. Phys. Fluids 25 (1), 017103.CrossRefGoogle Scholar
Hunt, J.C.R., Wray, A.A. & Moin, P. 1988 Eddies, streams, and convergence zones in turbulent flows. In Studying Turbulence Using Numerical Simulation Databases, 2. Center for Turbulence Research, Proceedings of the Summer Program 1988.Google Scholar
Jacob, J., Rivir, R., Carter, C. & Estevadeordal, J. 2004 Boundary layer flow control using AC discharge plasma actuators. In 2nd AIAA Flow Control Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285 (1), 6994.CrossRefGoogle Scholar
Johnson, H.G., Brion, V. & Jacquin, L. 2016 Crow instability: nonlinear response to the linear optimal perturbation. J. Fluid Mech. 795, 652670.CrossRefGoogle Scholar
Jukes, T., Choi, K.-S., Johnson, G. & Scott, S. 2004 Turbulent boundary-layer control for drag reduction using surface plasma. In 2nd AIAA Flow Control Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Jukes, T.N. 2007 Turbulent drag reduction using surface plasma . PhD thesis, University of Nottingham, UK.Google Scholar
Kerswell, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83113.CrossRefGoogle Scholar
Kopiev, V.F., Bityurin, V.A., Belyaev, I.V., Godin, S.M., Zaitsev, M.Y., Klimov, A.I., Kopiev, V.A., Moralev, I.A. & Ostrikov, N.N. 2012 Jet noise control using the dielectric barrier discharge plasma actuators. Acoust. Phys. 58 (4), 434441.CrossRefGoogle Scholar
Kuhnhenn, M., Simon, B., Maden, I. & Kriegseis, J. 2016 Interrelation of phase-averaged volume force and capacitance of dielectric barrier discharge plasma actuators. J. Fluid Mech. 809, R1.CrossRefGoogle Scholar
Landman, M.J. & Saffman, P.G. 1987 The three-dimensional instability of strained vortices in a viscous fluid. Phys. Fluids 30 (8), 23392342.CrossRefGoogle Scholar
Laporte, F. & Corjon, A. 2000 Direct numerical simulations of the elliptic instability of a vortex pair. Phys. Fluids 12 (5), 10161031.CrossRefGoogle Scholar
Leweke, T., Dizès, S.L. & Williamson, C.H. 2016 Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48 (1), 507541.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Meunier, P., Ehrenstein, U., Leweke, T. & Rossi, M. 2002 A merging criterion for two-dimensional co-rotating vortices. Phys. Fluids 14 (8), 27572766.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2001 Three-dimensional instability during vortex merging. Phys. Fluids 13 (10), 27472750.CrossRefGoogle Scholar
Meunier, P. & Leweke, T. 2005 Elliptic instability of a co-rotating vortex pair. J. Fluid Mech. 533, 125159.CrossRefGoogle Scholar
Mishra, B.K., Gupta, A. & Panigrahi, P.K. 2022 Near-wall characteristics of wall-normal jets generated by an annular dielectric-barrier-discharge plasma actuator. Phys. Rev. Fluids 7 (3), 033702.CrossRefGoogle Scholar
Mishra, B.K. & Panigrahi, P.K. 2017 a Formation and characterization of the vortices generated by a DBD plasma actuator in burst mode. Phys. Fluids 29 (2), 024104.CrossRefGoogle Scholar
Mishra, B.K. & Panigrahi, P.K. 2017 b Video: Starting vortex, wall jet, periodic vortex and dipole generated by a dielectric barrier discharge plasma actuator in quiescent air. In 70th Annual Meeting of the APS Division of Fluid Dynamics – Gallery of Fluid Motion. American Physical Society.Google Scholar
Mishra, B.K. & Panigrahi, P.K. 2018 Effect of duty cycle on flow induced by a dielectric barrier discharge plasma actuator in burst mode. In 7th International and 25th National Conference on Fluid Mechanics and Fluid Power (FMFP 2018). IIT Bombay.Google Scholar
Mishra, B.K. & Panigrahi, P.K. 2020 Flow field induced by a dielectric barrier discharge plasma actuator analyzed with bi–orthogonal decomposition. Phys. Fluids 32 (8), 087112.CrossRefGoogle Scholar
Mishra, B.K. & Panigrahi, P.K. 2024 Spatiotemporal structure of flow field by a dielectric-barrier-discharge plasma actuator using phase-resolved particle image velocimetry. Phys. Fluids 36 (11), 117137.CrossRefGoogle Scholar
Moore, D.W. & Saffman, P.G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A: Maths Phys. Engng Sci. 346, 413425.Google Scholar
Moreau, E. 2007 Airflow control by non-thermal plasma actuators. J. Phys. D: Appl. Phys. 40 (3), 605636.CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19 (1), 125155.CrossRefGoogle Scholar
Perry, A.E. & Fairlie, B.D. 1975 Critical Points in Flow Patterns. Vol. 18, Part B, Elsevier.Google Scholar
Polonsky, D., Stalnov, O. & Greenblatt, D. 2023 Noise reduction on a model helicopter rotor using dielectric barrier discharge plasma actuators. AIAA J. 61 (7), 18.CrossRefGoogle Scholar
Roth, J. & Dai, X. 2006 Optimization of the aerodynamic plasma actuator as an electrohydrodynamic (EHD) electrical device. In 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.Google Scholar
Roth, J., Sherman, D. & Wilkinson, S. 1998 Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In 36th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics.Google Scholar
Santhanakrishnan, A. & Jacob, J.D. 2007 Flow control with plasma synthetic jet actuators. J. Phys. D: Appl. Phys. 40 (3), 637651.CrossRefGoogle Scholar
Santhanakrishnan, A., Reasor, D.A. & LeBeau, R.P. 2009 Characterization of linear plasma synthetic jet actuators in an initially quiescent medium. Phys. Fluids 21 (4), 043602.CrossRefGoogle Scholar
Sattari, P., Rival, D.E., Martinuzzi, R.J. & Tropea, C. 2012 Growth and separation of a start-up vortex from a two-dimensional shear layer. Phys. Fluids 24 (10), 107102.CrossRefGoogle Scholar
Serpieri, J., Hehner, M.T. & Kriegseis, J. 2022 Active electrode isolation for advanced plasma actuators. Sensors Actuators A: Phys. 343, 113675.CrossRefGoogle Scholar
Serpieri, J., Hehner, M.T., & Kriegseis, J. 2023 a Steady bi-dimensional crossflow plasma jets in turbulent channel flows. Flow Turbul. Combust. 113 (1), 177193.CrossRefGoogle Scholar
Serpieri, J., Hehner, M.T., Pasch, S., Gatti, D. & Kriegseis, J. 2023 b Introducing a multi-modal plasma actuator for turbulent flow actuation. AIAA J. 61 (8), 37073712.CrossRefGoogle Scholar
Tabaczynski, R.J., Hoult, D.P. & Keck, J.C. 1970 High reynolds number flow in a moving corner. J. Fluid Mech. 42 (2), 249255.CrossRefGoogle Scholar
Thomas, F.O., Kozlov, A. & Corke, T.C. 2008 Plasma actuators for cylinder flow control and noise reduction. AIAA J. 46 (8), 19211931.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S.E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73 (4), 721733.CrossRefGoogle Scholar
Waleffe, F. 1989 The 3D instability of a strained vortex and its relation to turbulence. PhD thesis, Massachusetts Institute of Technology, Department of Mathematics, USA.Google Scholar
Waleffe, F. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A: Fluid Dyn. 2 (1), 7680.CrossRefGoogle Scholar
Warlitz, P., Hehner, M.T., Pasch, S., Serpieri, J., Blank, T. & Kriegseis, J. 2024 On durable materials for dielectric-barrier discharge plasma actuators. Sensors Actuators A: Phys. 366, 114985.CrossRefGoogle Scholar
Westerweel, J. 2000 Theoretical analysis of the measurement precision in particle image velocimetry. Exp. Fluids 29 (7), S003S012.CrossRefGoogle Scholar
Whalley, R. & Choi, K.-S. 2010 Starting, traveling, and colliding vortices: dielectric-barrier-discharge plasma in quiescent air. Phys. Fluids 22 (9), 091105.CrossRefGoogle Scholar
Whalley, R.D. & Choi, K.-S. 2012 The starting vortex in quiescent air induced by dielectric-barrier-discharge plasma. J. Fluid Mech. 703, 192203.CrossRefGoogle Scholar
Wu, J.-Z., Ma, H.-Y. & Zhou, M.-D. 2006 Vorticity and Vortex Dynamics. Springer.CrossRefGoogle Scholar
Xue, M., Gao, C., Xi, H.-D. & Liu, F. 2020 Vortices induced by a dielectric barrier discharge plasma actuator under burst-mode actuation. AIAA J. 58 (6), 24282441.CrossRefGoogle Scholar
Yamada, H. & Matsui, T. 1978 Preliminary study of mutual slip-through of a pair of vortices. Phys. Fluids 21 (2), 292294.CrossRefGoogle Scholar
Yamada, S., Shibata, K., Ishikawa, H., Honami, S. & Motosuke, M. 2010 Flow behavior behind a circular cylinder by DBD plasma actuators in low reynolds number. In 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics.Google Scholar
Yim, E., Billant, P. & Gallaire, F. 2020 Nonlinear evolution of the centrifugal instability using a semilinear model. J. Fluid Mech. 897, A34.CrossRefGoogle Scholar
Zheng, B., Lin, D., Qi, S., Hu, Y., Jin, Y., Chen, Q., Bian, D. & Yan, R. 2023 Turbulent skin-friction drag reduction by annular dielectric barrier discharge plasma actuator. Phys. Fluids 35 (12), 125129.CrossRefGoogle Scholar
Zong, H., Wu, Y., Su, Z., Liang, H. & Fang, Z. 2023 Experimental investigation of a grid plasma jet array in a turbulent boundary layer for skin-friction drag reduction. Phys. Fluids 35 (12), 125135.CrossRefGoogle Scholar
Supplementary material: File

Mishra and Panigrahi supplementary material movie 1

Movie-1 presents the spanwise flow visualization sequences in zy-plane fixed at x = 10 mm for fb = 10 Hz corresponding to figure 4.
Download Mishra and Panigrahi supplementary material movie 1(File)
File 43.3 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 2

Movie-2 presents the spanwise flow visualization sequences in zy-plane fixed at x = 10 mm for fb = 25 Hz, corresponding to figure 4.
Download Mishra and Panigrahi supplementary material movie 2(File)
File 11.7 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 3

Movie-3 presents the spanwise flow visualization sequences in zy-plane fixed at x = 20 mm for fb = 10 Hz corresponding to figure 5.
Download Mishra and Panigrahi supplementary material movie 3(File)
File 59.6 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 4

Movie-4 presents the spanwise flow visualization sequences in zy-plane fixed at x = 20 mm for fb = 25 Hz corresponding to figure 5.
Download Mishra and Panigrahi supplementary material movie 4(File)
File 32 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 5

Movie-5 presents the spanwise flow visualization sequences in zx-plane fixed at y = 3 mm for fb = 10 Hz corresponding to figure 6.
Download Mishra and Panigrahi supplementary material movie 5(File)
File 10.4 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 6

Movie-6 presents the spanwise flow visualization sequences in zx-plane fixed at y = 3 mm for fb = 25 Hz, corresponding to figure 6.
Download Mishra and Panigrahi supplementary material movie 6(File)
File 11 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 7

Movie-7 presents the spanwise flow visualization sequences in zx-plane fixed at y = 6 mm for fb = 10 Hz , corresponding to figure 7.
Download Mishra and Panigrahi supplementary material movie 7(File)
File 11.5 MB
Supplementary material: File

Mishra and Panigrahi supplementary material movie 8

Movie-8 presents the spanwise flow visualization sequences in zx-plane fixed at y = 6 mm for fb = 25 Hz corresponding to figure 7.
Download Mishra and Panigrahi supplementary material movie 8(File)
File 12.9 MB