Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T21:51:04.876Z Has data issue: false hasContentIssue false

Dynamical properties of vortical structures on the beta-plane

Published online by Cambridge University Press:  26 April 2006

G. G. Sutyrin
Affiliation:
Risø National Laboratory, Optics and Fluid Dynamics Department, PO Box 49, DK-4000 Roskilde, Denmark Permanent address: Russian Academy of Sciences, P. P. Shirshov Institut of Oceanology, 23 Krasikova Street, Moscow 117218, Russia.
J. S. Hesthaven
Affiliation:
Risø National Laboratory, Optics and Fluid Dynamics Department, PO Box 49, DK-4000 Roskilde, Denmark
J. P. Lynov
Affiliation:
Risø National Laboratory, Optics and Fluid Dynamics Department, PO Box 49, DK-4000 Roskilde, Denmark
J. Juul Rasmussen
Affiliation:
Risø National Laboratory, Optics and Fluid Dynamics Department, PO Box 49, DK-4000 Roskilde, Denmark

Abstract

The long-time evolution of monopolar and dipolar vortices influenced by the largescale gradient of the ambient potential vorticity (the β-effect) is studied by direct numerical solutions of the equivalent barotropic quasi-geostrophic equation. Translation and reorganization of vortical structures are shown to depend strongly on their intensity. Transport of trapped fluid by vortical structures is illustrated by calculating particle trajectories and by considering closed isolines of potential vorticity and the streamfunction in a co-moving reference frame.

The initial behaviour of strong monopoles is found to be well described by a recent approximate theory for the evolution of azimuthal mode one, even for times longer than the linear Rossby wave period. In the long-time limit, strong monopoles transport particles mainly westward, although the meridional displacement is several times larger than the initial vortex size. The appearance of an annulus with opposite radial gradient of the potential vorticity around the vortex core is demonstrated. This annulus forms owing to the meridional vortex drift on the β-plane and results in reorganization of a strong monopolar vortex into a rotating tripole. A critical value of the vortex intensity is found, below which the tripolar structure does not appear even in the case of an initially shielded vortex. Weak monopolar vortices are able to trap particles and provide some west-meridional fluid transport, even in the case when they decay like a linear Rossby wave packet.

The evolution of initial f-plane dipoles on the β-plane is strongly dependent on the initial direction of propagation. Strong dipoles adjust to steadily propagating modon solutions either accelerating (westward case), decelerating (eastward case) or oscillating with a decaying amplitude (meridional case), thereby carrying trapped particles predominantly eastward. A steady state is not reached if the dipole intensity is below a critical value which depends on the initial direction of propagation. Weak dipoles either decay and shrink owing to Rossby wave radiation (westward case), gradually separate and split (eastward case), or disintegrate (meridional case) without longdistance fluid transport. Thus, on the β-plane monopoles provide mainly westward transport of trapped fluid, whereas dipoles provide mainly eastward transport. Only strong monopoles are found to provide significant meridional fluid transport.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adem, J. 1956 A series solution for the barotropic vorticity equation and its application in the study of atmospheric vortices. Tellus 8, 364372.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 1987 Spectral Methods in Fluid Dynamics. Springer.
Carnevale, G. F., Kloosterziel, R. C. & Heijst, G. J. F. van 1991 Propagation of barotropic vortices over topography in a rotating tank. J. Fluid Mech., 233, 119139.Google Scholar
Carnevale, G. F., Vallis, G. K., Purini, R. & Briscolini, M. 1988 Propagation of barotropic modons over topography. Geophys. Astrophys. Fluid Dyn. 41, 45101.Google Scholar
Carton, X. J., Flierl, G. R. & Polvani, L. M. 1989 The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys. Lett. 9, 339344.Google Scholar
Chaplygin, S. A. 1902 One case of vortex motion in fluid. Proc. Phys. Sec. Natural Phil. Soc. 11, 114.Google Scholar
Dewar, W. K. & Flierl, G. R. 1985 Particle trajectories and simple models of transport in coherent vortices. Dyn. Atmos. Oceans 9, 215252.Google Scholar
Flierl, G. R. 1977 The application of linear quasi-geostrophic dynamics to Gulf Stream rings. J. Phys. Oceanogr. 7, 365379.Google Scholar
Flierl, G. R. 1987 Isolated eddy models in geophysics. Ann. Rev. Fluid Mech. 19, 493530.Google Scholar
Flierl, G. R. & Haines, K. 1993 The decay of modons due to Rossby wave radiation. Phys. Fluids A (submitted).Google Scholar
Flierl, G. R., Larichev, V. D., McWilliams, J. C. & Reznik, G. M. 1980 The dynamics of baroclinic and barotropic solitary eddies. Dyn. Atmos. Oceans 5, 141.Google Scholar
Gent, P. R. & McWilliams, J. C. 1986 The instability of barotropic circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.Google Scholar
Gottlieb, D. & Orszag, S. A. 1977 Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.
Haines, K. 1989 Baroclinic modons as prototypes for atmospheric blocking. J. Atmos. Sci. 46, 32023218.Google Scholar
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in magnetized nonuniform plasma. Phys. Fluids 21, 8792.Google Scholar
Heijst, G. J. F. van & Kloosterziel, R. C. 1989 Tripolar vortices in a rotating fluid. Nature 338, 569571.Google Scholar
Heijst, G. J. F. van, Kloosterziel, R. C. & Williams, C. W. M. 1991 Laboratory experiments on the tripolar vortex in a rotating fluid. J. Fluid Mech. 225, 301331.Google Scholar
Hesthaven, J. S., Lynov, J. P. & Nycander, J. 1993a Dynamics of non-stationary dipole vortices. Phys. Fluids. A 5, 622629.Google Scholar
Hesthaven, J. S., Lynov, J. P., Rasmussen, J. J. & Sutyrin, G. G. 1993b Generation of tripolar vortical structures on the beta-plane. Phys. Fluids A 5, 16741678.Google Scholar
Hobson, D. D. 1991 A point vortex dipole model of an isolated modon. Phys. Fluids A 3, 30273033.Google Scholar
Hopfinger, E. J. & Heijst, G. J. F. van 1993 Vortices in rotating fluids. Ann. Rev. Fluid Mech. 25, 241289.Google Scholar
Huld, T., Nielsen, A. H., Pécseli, H. L. & Rasmussen, J. J. 1991 Coherent structures in two-dimensional plasma turbulence. Phys. Fluids B 3, 16091625.Google Scholar
Ingersoll, A. P. 1990 Atmospheric dynamics of the outer planets. Science 248, 308315.Google Scholar
Kamenkovich, V. M., Koshlyakov, M. N. & Monin, A. S. 1986 Synoptic Eddies in the Ocean. D. Reidel.
Kloosterziel, R. C. 1990 Barotropic vortices in a rotating fluid. PhD thesis, Utrecht University, The Netherlands.
Kloosterziel, R. C. & Carnevale, C. F. 1993 Propagation of barotropic dipoles over topography in a rotating tank. Dyn. Atmos. Oceans 19, 65100.Google Scholar
Kloosterziel, R. C. & Heijst, G. J. F. van 1991 An experimental study of unstable barotropic vortices in a rotating fluid. J. Fluid Mech. 223, 124.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Dover.
Larichev, V. D. 1983 General properties of nonlinear synoptic dynamics in a simple model of a barotropic ocean. Oceanology 23, 410415.Google Scholar
Larichev, V. D. & Reznik, G. M. 1976 Two-dimensional solitary Rossby waves. Dokl. Akad. Nauk SSSR 231, 10771079.Google Scholar
Legras, B., Santangelo, P. & Benzi, R. 1988 High-resolution numerical experiments for forced two-dimensional turbulence. Europhys. Lett. 5, 3742.Google Scholar
Makino, M., Kamimura, T. & Taniuti, T. 1981 Dynamics of two-dimensional solitary vortices in a low-β plasma with convective motion. J. Phys. Soc. Japan 50, 980989.Google Scholar
McWilliams, J. C. 1984 The emergence of isolated coherent vortices in turbulent flows. J. Fluid Mech. 146, 2142.Google Scholar
McWilliams, J. C. 1989 Statistical properties of decaying geostrophic turbulence. J. Fluid Mech. 198, 199230.Google Scholar
McWilliams, J. C. & Flierl, G. R. 1979 On the evolution of isolated, nonlinear vortices. J. Phys. Oceanogr. 9, 11551182.Google Scholar
McWilliams, J. C., Flierl, G. R., Larichev, V. D. & Reznik, G. M. 1981 Numerical studies of barotropic modons. Dyn. Atmos. Oceans 5, 219238.Google Scholar
McWilliams, J. C. & Zabusky, N. 1983 Interaction of isolated vortices. II. Modon generation by monopole collision. Geophys. Astrophys. Fluid Dyn. 24, 122.Google Scholar
Nezlin, M. V. 1986 Rossby solitons (Experimental investigations and laboratory model of natural vortices of the Jovian Great Red Spot type). Sov. Phys. USPEKHI 29, 807842.Google Scholar
Nezlin, M. V. & Sutyrin, G. G. 1994 Problems of simulations of large, long-lived vortices in the atmospheres of the giant planets (Jupiter, Saturn, Neptune). Surveys Geophys. 15 (in press).Google Scholar
Nycander, J. 1988 New stationary vortex solutions of the Hasegawa–Mima equation. J. Plasma Phys. 39, 413430.Google Scholar
Nycander, J. 1989 The existence of stationary vortex solutions of the equations for nonlinear driftwaves in plasmas and nonlinear Rossby waves. Phys. Fluids B 1, 17881796.Google Scholar
Nycander, J. 1992 Refutation of stability proofs for dipole vortices. Phys. Fluids A 4, 467476.Google Scholar
Nycander, J. & Isichenko, M. B. 1990 Motion of dipole vortices in a weakly inhomogeneous medium and related convective transport. Phys. Fluids B 2, 20422047.Google Scholar
Nycander, J. & Sutyrin, G. G. 1992 Steadily translating anticyclones on the beta-plane. Dyn. Atmos. Oceans 16, 473498.Google Scholar
Orlandi, P. & Heijst, G. J. F. van 1992 Numerical simulation of tripolar vortices in 2D flow. Fluid Dyn. Res. 9, 179206.Google Scholar
Pécseli, H. L. & Trulsen, J. 1989 A statistical analysis of numerically simulated plasma turbulence. Phys. Fluids B 1, 16161636.Google Scholar
Polvani, L. M. & Carton, X. J. 1990 The tripole: a new coherent vortex structure of incompressible two-dimensional flows. Geophys. Astrophys. Fluid Dyn. 51, 87102.Google Scholar
Ramsden, D. & Holloway, G. 1991 Timestepping Lagrangian particles in two dimensional Eulerian flow fields. J. Comput. Phys 95, 101116.Google Scholar
Reznik, G. M. 1992 Dynamics of singular vortices on the beta-plane. J. Fluid Mech. 240, 405432.Google Scholar
Stern, M. 1975 Minimal properties of planetary eddies. J. Mar. Res. 33, 113.Google Scholar
Sutyrin, G. G. 1987 The beta-effect and the evolution of a localized vortex. Sov. Phys. Dokl. 32, 791793.Google Scholar
Sutyrin, G. G. 1988 Motion of an intense vortex on a rotating globe. Fluid Dyn 23, 215223.Google Scholar
Sutyrin, G. G. & Flierl, G. R. 1994 Intense vortex motion on the beta-plane: Development of the beta-gyres. J. Atmos. Sci. 51 (in press).Google Scholar
Swenson, M. 1987 Instability of equivalent-barotropic riders. J. Phys. Oceanogr. 17, 492506.Google Scholar
Velasco Fuentes, O. U. & Heijst, G. J. F. van 1994 Experimental study of dipolar vortices on a topographic β-plane. J. Fluid Mech. 259, 79106.Google Scholar
Yeung, P. K. & Pope, S. B. 1988 An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comput. Phys. 79, 373416.Google Scholar