Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-18T22:25:41.355Z Has data issue: false hasContentIssue false

Dynamical cascade models for Kolmogorov's inertial flow

Published online by Cambridge University Press:  19 April 2006

Jon Lee
Affiliation:
Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio 45433

Abstract

To resolve possible fluctuations about the mean motion of the Desnyansky-Novikov model for Kolmogorov's inertial flow, we have investigated two dynamical systems of the cascade process which are formally derivable from Burgers’ equation. The first cascade model produced no fluctuations, for its trajectory was identical with the Desnyansky–Novikov model's. Disappointingly, the second cascade system, which is similar to the Kerr–Siggia model, has also proved unable to engender fluctuations. This is because the second model when truncated consistently maps an arbitrary initial point into the attainable phase space of the first cascade model. However, when truncated inconsistently the trajectory of second model can exhibit a quite erratic and somewhat sporadic motion, thereby reflecting the apparently random motion of inviscid equilibrium solutions. Therefore, the observation of temporally intermittent fluctuations by a stationary Kerr–Siggia model is due to the inconsistent truncation produced by restricting energy dissipation for all but the upper truncation mode in their model.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bell, T. L. & Nelkin, M. 1977 Phys. Fluids 20, 345.
Bell, T. L. & Nelkin, M. 1978 J. Fluid Mech. 88, 369.
Byrd, P. F. & Friedman, M. D. 1954 Handbook of Elliptic Integrals for Engineers and Physicists. Springer.
Davis, H. T. 1962 Introduction to Nonlinear Differential and Integral Equations, cha. 6 and 7. Dover.
Desnyansky, V. N. & Novikov, E. A. 1974a Prikl. Mat. Mekh. (transl. J. Appl. Math. Mech.) 38, 507.
Desnyansky, V. N. & Novikov, E. A. 1974b Izv. Akad. Nauk S.S.S.R., Fiz. Atmos. Okean. (transl. Atmos. Ocean. Phys.) 10, 127.
Kamke, E. 1943 Differentialgleichungen, Lösungsmethoden und Lösungen. Akademische.
Kells, L. C. & Orszag, S. A. 1978 Phys. Fluids 21, 162.
Kerr, R. M. & Siggia, E. D. 1978 J. Stat. Phys. 19, 543.
Lamb, H. 1943 Higher Mechanics. Cambridge University Press.
Lapidus, L., Aiken, R. C. & Liu, Y. A. 1974 In Stiff Differential Systems (ed. R. A. Willoughby), p. 187. Plenum.
Lebowitz, J. L. 1972 In Statistical Mechanics: New Concepts, New Problems, New Applications (ed. S. A. Rice, K. F. Freed & J. C. Light), p. 41. University of Chicago Press.
Lee, J. 1971 J. Fluid Mech. 47, 321.
Lee, J. 1972 Phys. Fluids 15, 540.
Lee, J. 1979 Phys. Fluids 22, 40.
Lorenz, E. N. 1960 Tellus 12, 243.
Lorenz, E. N. 1963 J. Atmos. Sci. 20, 130.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. 2. Massachusetts Institute of Technology Press.
Orszag, S. A. 1977 In Fluid Dynamics (ed. R. Balian & J.-L. Peube). Gordon and Breach.
Siggia, E. D. 1977 Phys. Rev. A 15, 1730.
Siggia, E. D. 1978 Phys. Rev. A 17, 1166.