Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T03:46:48.813Z Has data issue: false hasContentIssue false

Dynamic wetting failure in shear-thinning and shear-thickening liquids

Published online by Cambridge University Press:  31 March 2020

Vasileios Charitatos
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455, USA
Wieslaw J. Suszynski
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455, USA
Marcio S. Carvalho
Affiliation:
Department of Mechanical Engineering, Pontificia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
Satish Kumar*
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN55455, USA
*
Email address for correspondence: [email protected]

Abstract

Dynamic wetting failure in shear-thinning and shear-thickening liquids is examined in this paper. Flow visualization experiments using a curtain-coating geometry suggest that shear thinning postpones the onset of wetting failure and the resulting air entrainment. To advance the fundamental understanding of the underlying physical mechanisms, a hydrodynamic model consisting of liquid displacing air in a rectangular channel in the absence of inertia is developed. Both shear thinning and shear thickening are considered by using Carreau-type models to describe the liquid rheology. Steady-state solutions are calculated using the Galerkin finite-element method and the critical capillary number where wetting failure occurs is identified. Shear thinning is found to postpone the onset of wetting failure whereas shear thickening is found to promote it. The underlying mechanism involves thickening/thinning of the air film as a consequence of shear thinning/thickening of the liquid and the tangential stress balance. The results can be interpreted in terms of an effective viscosity, and demonstrate that similar physical mechanisms govern dynamic wetting failure in Newtonian, shear-thinning and shear-thickening liquids.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betelú, S. I. & Fontelos, M. A. 2003 Capillarity driven spreading of power-law fluids. Appl. Math. Lett. 9659 (03), 13151320.CrossRefGoogle Scholar
Betelú, S. I. & Fontelos, M. A. 2004 Capillarity driven spreading of circular drops of shear-thinning fluid. Math. Comput. Model. 40 (7–8), 729734.CrossRefGoogle Scholar
Bhamidipati, K. L., Didari, S., Bedell, P. & Harris, T. A. L. 2011 Wetting phenomena during processing of high-viscosity shear-thinning fluid. J. Non-Newtonian Fluid Mech. 166 (12–13), 723733.CrossRefGoogle Scholar
Bird, R. B. 1976 Useful non-Newtonian models. Annu. Rev. Fluid Mech. 8, 1334.CrossRefGoogle Scholar
Blake, T. D. 2006 The physics of moving wetting lines. J. Colloid Interface Sci. 299 (1), 113.CrossRefGoogle ScholarPubMed
Blake, T. D., Bracke, M. & Shikhmurzaev, Y. D. 1999 Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle. Phys. Fluids 11 (8), 19952007.CrossRefGoogle Scholar
Blake, T. D., Clarke, A. & Ruschak, K. J. 1994 Hydrodynamic assist of dynamic wetting. AIChE J. 40 (2), 229243.CrossRefGoogle Scholar
Blake, T. D., Dobson, R., Batts, G. N. & Harrison, W. J.1995 Coating processes. US Patent 5391401.Google Scholar
Blake, T. D. & Ruschak, K. J. 1979 A maximum speed of wetting. Nature 282 (5738), 489491.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J. & Meunier, J. 2009 Wetting and spreading. Rev. Mod. Phys. 81 (2), 739805.CrossRefGoogle Scholar
Burley, R. & Kennedy, B. S. 1976 An experimental study of air entrainment at a solid/liquid/gas interface. Chem. Engng Sci. 31 (10), 901911.CrossRefGoogle Scholar
Carré, A. & Eustache, F. 2000 Spreading kinetics of shear-thinning fluids in wetting and dewetting modes. Langmuir 16 (6), 29362941.CrossRefGoogle Scholar
Carreau, P. J., Kee, D. D. & Daroux, M. 1979 An analysis of the viscous behaviour of polymeric solutions. Can. J. Chem. Engng 57 (2), 135140.CrossRefGoogle Scholar
Chan, T. S., Srivastava, S., Marchand, A., Andreotti, B., Biferale, L., Toschi, F. & Snoeijer, J. H. 2013 Hydrodynamics of air entrainment by moving contact lines. Phys. Fluids 25 (7), 074105.CrossRefGoogle Scholar
Cohu, O. & Benkreira, H. 1998 Entrainment of air by a solid surface plunging into a non-newtonian liquid. AIChE J. 44 (11), 23602368.CrossRefGoogle Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Didari, S., Ahmad, Z. Y., Veldhorst, J. D. & Harris, T. A. L. 2014 Wetting behavior of the shear thinning power law fluids. J. Coat. Technol. Res. 11 (1), 95102.CrossRefGoogle Scholar
Dussan V., E. B. 1976 The moving contact line: the slip boundary condition. J. Fluid Mech. 77 (4), 665684.CrossRefGoogle Scholar
Galindo-Rosales, F. J., Rubio-Hernández, F. J. & Sevilla, A. 2011 An apparent viscosity function for shear thickening fluids. J. Non-Newtonian Fluid Mech. 166 (5–6), 321325.CrossRefGoogle Scholar
Galindo-Rosales, F. J., Rubio-Hernández, F. J. & Velázquez-Navarro, J. F. 2009 Shear-thickening behavior of Aerosil® R816 nanoparticles suspensions in polar organic liquids. Rheol. Acta 48 (6), 699708.CrossRefGoogle Scholar
de Gennes, P.-G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57 (3), 827863.CrossRefGoogle Scholar
Gerritsen, M. G. & Durlofsky, L. J. 2005 Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 37 (1), 211238.CrossRefGoogle Scholar
He, M. & Nagel, S. R. 2019 Characteristic interfacial structure behind a rapidly moving contact line. Phys. Rev. Lett. 122 (1), 18001.CrossRefGoogle ScholarPubMed
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35 (1), 85101.CrossRefGoogle Scholar
Jacqmin, D. 2004 Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517, 209228.CrossRefGoogle Scholar
Kamal, C., Sprittles, J. E., Snoeijer, J. H. & Eggers, J. 2019 Dynamic drying transition via free-surface cusps. J. Fluid Mech. 858, 760786.CrossRefGoogle Scholar
Khandavalli, S. & Rothstein, J. P. 2016 The effect of shear-thickening on the stability of slot-die coating. AIChE J. 62, 45364547.CrossRefGoogle Scholar
Liang, Z.-P., Wang, X.-D., Duan, Y.-Y. & Min, Q. 2012 Energy-based model for capillary spreading of power-law liquids on a horizontal plane. Colloids Surf. A 403, 155163.CrossRefGoogle Scholar
Liu, C.-Y., Carvalho, M. S. & Kumar, S. 2017 Mechanisms of dynamic wetting failure in the presence of soluble surfactants. J. Fluid Mech. 825, 677703.CrossRefGoogle Scholar
Liu, C.-Y., Carvalho, M. S. & Kumar, S. 2019 Dynamic wetting failure in curtain coating: comparison of model predictions and experimental observations. Chem. Engng Sci. 195, 7482.CrossRefGoogle Scholar
Liu, C.-Y., Vandre, E., Carvalho, M. S. & Kumar, S. 2016a Dynamic wetting failure and hydrodynamic assist in curtain coating. J. Fluid Mech. 808, 290315.CrossRefGoogle Scholar
Liu, C.-Y., Vandre, E., Carvalho, M. S. & Kumar, S. 2016b Dynamic wetting failure in surfactant solutions. J. Fluid Mech. 789, 285309.CrossRefGoogle Scholar
Lu, G., Wang, X.-D. & Duan, Y.-Y. 2016 A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids. Adv. Colloid Interface Sci. 236, 4362.CrossRefGoogle ScholarPubMed
Morrison, F. A. 2001 Understanding Rheology. pp. 387394. Oxford University Press.Google Scholar
Ning, C.-Y., Tsai, C.-C. & Liu, T.-J. 1996 The effect of polymer additives on extrusion slot coating. Chem. Engng Sci. 51 (12), 32893297.CrossRefGoogle Scholar
Petrov, P. G. & Petrov, J. G. 1992 A combined molecular-hydrodynamic approach to wetting kinetics. Langmuir 8 (7), 17621767.CrossRefGoogle Scholar
Qin, J. & Gao, P. 2018 Asymptotic theory of fluid entrainment in dip coating. J. Fluid Mech. 844, 10261037.CrossRefGoogle Scholar
Romero, O. J., Suszynski, W. J., Scriven, L. E. & Carvalho, M. S. 2004 Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. J. Non-Newtonian Fluid Mech. 118 (2–3), 137156.CrossRefGoogle Scholar
Sbragaglia, M., Sugiyama, K. & Biferale, L. 2008 Wetting failure and contact line dynamics in a Couette flow. J. Fluid Mech. 614, 471493.CrossRefGoogle Scholar
Seevaratnam, G. K., Suo, Y., Ramé, E., Walker, L. M. & Garoff, S. 2007 Dynamic wetting of shear thinning fluids. Phys. Fluids 19 (1), 012103.CrossRefGoogle Scholar
Shikhmurzaev, Y. D. 2007 Capillary Flows with Forming Interfaces. Chapman & Hall/CRC.CrossRefGoogle Scholar
Sibley, D. N., Nold, A. & Kalliadasis, S. 2015 The asymptotics of the moving contact line: cracking an old nut. J. Fluid Mech. 764, 445462.CrossRefGoogle Scholar
Snoeijer, J. H. & Andreotti, B. 2013 Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45 (1), 269292.CrossRefGoogle Scholar
Sprittles, J. E. 2015 Air entrainment in dynamic wetting: Knudsen effects and the influence of ambient air pressure. J. Fluid Mech. 769, 444481.CrossRefGoogle Scholar
Sprittles, J. E. 2017 Kinetic effects in dynamic wetting. Phys. Rev. Lett. 118 (11), 114502.CrossRefGoogle ScholarPubMed
Starov, V. M., Tyatyushkin, A. N., Velarde, M. G. & Zhdanov, S. A. 2003 Spreading of non-Newtonian liquids over solid substrates. J. Colloid Interface Sci. 257, 284290.CrossRefGoogle ScholarPubMed
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36 (1), 381411.CrossRefGoogle Scholar
Tamjid, E. & Guenther, B. H. 2010 Rheology and colloidal structure of silver nanoparticles dispersed in diethylene glycol. Powder Technol. 197 (1–2), 4953.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting failure during fluid displacement along a moving substrate. Phys. Fluids 25 (10), 102103.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2014 Characteristics of air entrainment during dynamic wetting failure along a planar substrate. J. Fluid Mech. 747, 119140.CrossRefGoogle Scholar
Wang, X., Min, Q., Zhang, Z. & Duan, Y. 2018 Effect of moving contact line’s curvature on dynamic wetting of non-Newtonian fluids. Langmuir 34, 1561215620.CrossRefGoogle ScholarPubMed
Wang, X. D., Lee, D. J., Peng, X. F. & Lai, J. Y. 2007a Spreading dynamics and dynamic contact angle of non-newtonian fluids. Langmuir 23 (15), 80428047.CrossRefGoogle Scholar
Wang, X. D., Zhang, Y., Lee, D. J. & Peng, X. F. 2007b Spreading of completely wetting or partially wetting power-law fluid on solid surface. Langmuir 23 (18), 92589262.CrossRefGoogle Scholar
Wei, Y., Garoff, S. & Walker, L. M. 2009a Impact of fluid memory on wetting approaching the air entrainment limit. J. Colloid Interface Sci. 337 (2), 619621.CrossRefGoogle Scholar
Wei, Y., Rame, E., Walker, L. M. & Garoff, S. 2009b Dynamic wetting with viscous Newtonian and non-Newtonian fluids. J. Phys.: Condens. Matter 21, 464126.Google Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Annu. Rev. Fluid Mech. 36 (1), 2953.CrossRefGoogle Scholar
Wilkinson, W. L. 1975 Entrainment of air by a solid surface entering a liquid/air interface. Chem. Engng Sci. 30 (10), 12271230.CrossRefGoogle Scholar
Wilson, M. C. T., Summers, J. L., Shikhmurzaev, Y. D., Clarke, A. & Blake, T. D. 2006 Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment. Phys. Rev. E 73, 041606.Google ScholarPubMed
Yang, C. K., Wong, D. S. H. & Liu, T. J. 2004 The effects of polymer additives on the operating windows of slot coating. Polym. Engng Sci. 44 (10), 19701976.CrossRefGoogle Scholar
Supplementary material: File

Charitatos et al. Supplementary Materials

Charitatos et al. Supplementary Materials

Download Charitatos et al. Supplementary Materials(File)
File 1.3 MB