Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-12-01T03:51:20.908Z Has data issue: false hasContentIssue false

Drops bouncing off macro-textured superhydrophobic surfaces

Published online by Cambridge University Press:  13 July 2017

Ali Mazloomi Moqaddam
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
Shyam S. Chikatamarla
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
Iliya V. Karlin*
Affiliation:
Aerothermochemistry and Combustion Systems Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
*
Email address for correspondence: [email protected]

Abstract

Recent experiments with droplets impacting macro-textured superhydrophobic surfaces revealed new regimes of bouncing with a remarkable reduction of the contact time. Here we present a comprehensive numerical study that reveals the physics behind these new bouncing regimes and quantifies the roles played by various external and internal forces. For the first time, accurate three-dimensional simulations involving realistic macro-textured surfaces are performed. After demonstrating that simulations reproduce experiments in a quantitative manner, the study is focused on analysing the flow situations beyond current experiments. We show that the experimentally observed reduction of contact time extends to higher Weber numbers, and analyse the role played by the texture density. Moreover, we report a nonlinear behaviour of the contact time with the increase of the Weber number for imperfectly coated textures, and study the impact on tilted surfaces in a wide range of Weber numbers. Finally, we present novel energy analysis techniques that elaborate and quantify the interplay between the kinetic and surface energy, and the role played by the dissipation for various Weber numbers.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ansumali, S., Karlin, I. V. & Öttinger, H. C. 2003 Minimal entropic kinetic models for hydrodynamics. Europhys. Lett. 63 (6), 798.Google Scholar
Antonini, C., Bernagozzi, I., Jung, S., Poulikakos, D. & Marengo, M. 2013a Water drops dancing on ice: how sublimation leads to drop rebound. Phys. Rev. Lett. 111 (1), 014501.Google Scholar
Antonini, C., Jung, S., Wetzel, A., Heer, E., Schoch, P., Mazloomi Moqaddam, A., Chikatamarla, S. S., Karlin, I., Marengo, M. & Poulikakos, D. 2016 Contactless prompt tumbling rebound of drops from a sublimating slope. Phys. Rev. Fluids 1 (1), 013903.CrossRefGoogle Scholar
Antonini, C., Villa, F., Bernagozzi, I., Amirfazli, A. & Marengo, M. 2013b Drop rebound after impact: the role of the receding contact angle. Langmuir 29 (52), 1604516050.CrossRefGoogle ScholarPubMed
Biance, A.-L., Clanet, C. & Quéré, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321637.Google Scholar
Bird, J. C., Dhiman, R., Kwon, H.-M. & Varanasi, K. K. 2013 Reducing the contact time of a bouncing drop. Nature 503 (7476), 385388.CrossRefGoogle ScholarPubMed
Blossey, R. 2003 Self-cleaning surfaces – virtual realities. Nat. Mater. 2 (5), 301306.CrossRefGoogle ScholarPubMed
Chikatamarla, S. S., Ansumali, S. & Karlin, I. V. 2006 Entropic lattice boltzmann models for hydrodynamics in three dimensions. Phys. Rev. Lett. 97 (1), 010201.Google Scholar
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.Google Scholar
De Ruiter, J., Lagraauw, R., Van Den Ende, D. & Mugele, F. 2015 Wettability-independent bouncing on flat surfaces mediated by thin air films. Nat. Phys. 11 (1), 4853.Google Scholar
Frapolli, N., Chikatamarla, S. S. & Karlin, I. V. 2015 Entropic lattice boltzmann model for compressible flows. Phys. Rev. E 92 (6), 061301.Google ScholarPubMed
Frapolli, N., Chikatamarla, S. S. & Karlin, I. V. 2016 Lattice kinetic theory in a comoving galilean reference frame. Phys. Rev. Lett. 117 (1), 010604.Google Scholar
Gauthier, A., Symon, S., Clanet, C. & Quéré, D. 2015 Water impacting on superhydrophobic macrotextures. Nat. Commun. 6, 8001.Google Scholar
Jung, S., Tiwari, M. K., Doan, N. V. & Poulikakos, D. 2012 Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615.Google Scholar
Karlin, I. V., Ferrante, A. & Öttinger, H. C. 1999 Perfect entropy functions of the lattice Boltzmann method. Europhys. Lett. 47 (2), 182.Google Scholar
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108 (7), 074503.Google Scholar
Korteweg, D. J. 1901 Sur la forme que prennent les equations du mouvements des fluides si lon tient compte des forces capillaires causes par des variations de densite. Arch. Neerl. Sci. Exactes Nat. Ser. II 6, 124.Google Scholar
Liu, Y., Andrew, M., Li, J., Yeomans, J. M. & Wang, Z. 2015a Symmetry breaking in drop bouncing on curved surfaces. Nat. Commun. 6, 10034.CrossRefGoogle ScholarPubMed
Liu, Y., Moevius, L., Xu, X., Qian, T., Yeomans, J. M. & Wang, Z. 2014 Pancake bouncing on superhydrophobic surfaces. Nat. Phys. 10, 515519.Google Scholar
Liu, Y., Whyman, G., Bormashenko, E., Hao, C. & Wang, Z. 2015b Controlling drop bouncing using surfaces with gradient features. Appl. Phys. Lett. 107 (5), 051604.Google Scholar
Maitra, T., Antonini, C., Tiwari, M. K., Mularczyk, A., Imeri, Z., Schoch, P. & Poulikakos, D. 2014 Supercooled water drops impacting superhydrophobic textures. Langmuir 30 (36), 1085510861.Google Scholar
Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148.Google Scholar
Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163.CrossRefGoogle Scholar
Mazloomi Moqaddam, A., Chikatamarla, S. S. & Karlin, I. V. 2015a Simulation of droplets collisions using two-phase entropic lattice boltzmann method. J. Stat. Phys. 161 (6), 14201433.Google Scholar
Mazloomi Moqaddam, A., Chikatamarla, S. S. & Karlin, I. V. 2015b Entropic lattice boltzmann method for multiphase flows. Phys. Rev. Lett. 114, 174502.Google Scholar
Mazloomi Moqaddam, A., Chikatamarla, S. S. & Karlin, I. V. 2015c Entropic lattice boltzmann method for multiphase flows: fluid-solid interfaces. Phys. Rev. E 92, 023308.Google Scholar
Mazloomi Moqaddam, A., Chikatamarla, S. S. & Karlin, I. V. 2016 Simulation of binary droplet collisions with the entropic lattice boltzmann method. Phys. Fluids 28 (2), 022106.Google Scholar
Moevius, L., Liu, Y., Wang, Z. & Yeomans, J. M. 2014 Pancake bouncing: simulations and theory and experimental verification. Langmuir 30 (43), 1302113032.Google Scholar
Okumura, K., Chevy, F., Richard, D., Quéré, D. & Clanet, C. 2003 Water spring: a model for bouncing drops. Europhys. Lett. 62 (2), 237.Google Scholar
Rein, M. 1993 Phenomena of liquid drop impact on solid and liquid surfaces. Fluid Dyn. Res. 12 (2), 61.Google Scholar
Riboux, G. & Gordillo, J. M. 2014 Experiments of drops impacting a smooth solid surface: a model of the critical impact speed for drop splashing. Phys. Rev. Lett. 113 (2), 024507.Google Scholar
Richard, D., Clanet, C. & Quéré, D. 2002 Surface phenomena: contact time of a bouncing drop. Nature 417 (6891), 811811.Google Scholar
Richard, D. & Quéré, D. 2000 Bouncing water drops. Europhys. Lett. 50 (6), 769.Google Scholar
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.Google Scholar
Roisman, I. V., Berberović, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21 (5), 052103.Google Scholar
Rowlinson, J. S. & Widom, B. 1982 Molecular Theory of Capillarity. Clarendon.Google Scholar
Rykaczewski, K., Landin, T., Walker, M. L., Scott, J. H. J. & Varanasi, K. K. 2012 Direct imaging of complex nano- to microscale interfaces involving solid, liquid, and gas phases. ACS Nano 6 (10), 93269334.CrossRefGoogle ScholarPubMed
Schutzius, T. M., Jung, S., Maitra, T., Graeber, G., Köhme, M. & Poulikakos, D. 2015 Spontaneous droplet trampolining on rigid superhydrophobic surfaces. Nature 527 (7576), 8285.CrossRefGoogle ScholarPubMed
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108 (3), 036101.Google Scholar
Tran, T., Staat, H. J. J., Susarrey-Arce, A., Foertsch, T. C., van Houselt, A., Gardeniers, H. J. G. E., Prosperetti, A., Lohse, D. & Sun, C. 2013 Droplet impact on superheated micro-structured surfaces. Soft Matt. 9 (12), 32723282.Google Scholar
Tuteja, A., Choi, W., Ma, M., Mabry, J. M., Mazzella, S. A., Rutledge, G. C., McKinley, G. H. & Cohen, R. E. 2007 Designing superoleophobic surfaces. Science 318 (5856), 16181622.CrossRefGoogle ScholarPubMed
Wachters, L. H. J. & Westerling, N. A. J. 1966 The heat transfer from a hot wall to impinging water drops in the spheroidal state. Chem. Engng Sci. 21 (11), 10471056.Google Scholar
Wang, Z., Lopez, C., Hirsa, A. & Koratkar, N. 2007 Impact dynamics and rebound of water droplets on superhydrophobic carbon nanotube arrays. Appl. Phys. Lett. 91 (2), 023105.Google Scholar
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75 (5), 056316.Google Scholar
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94 (18), 184505.Google Scholar
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing. Annu. Rev. Fluid Mech. 38, 159192.Google Scholar
Yuan, P. & Schaefer, L. 2006 Equations of state in a lattice boltzmann model. Phys. Fluids 18 (4), 042101.Google Scholar

Mazloomi Moqaddam et al. supplementary movie 1

Impact of a liquid drop on a flat superhydrophobic surface at We=26.25. The drop continues to spread after it hits the solid, after that it recoils and finally detaches from the surface at t*contact=tcontact⁄τ=2.26.

Download Mazloomi Moqaddam et al. supplementary movie 1(Video)
Video 530.4 KB

Mazloomi Moqaddam et al. supplementary movie 2

Impact of a liquid drop on tapered posts at We=6. The drop exhibits conventional bouncing (spreading, retracting and then leaving the substrate) with tcontact ≫t.

Download Mazloomi Moqaddam et al. supplementary movie 2(Video)
Video 980.2 KB

Mazloomi Moqaddam et al. supplementary movie 3

Bouncing off a tapered macrotexture at We=30. The drop rebounds with a pancake shape resulting in a fourfold reduction of contact time as compared with conventional bouncing.

Download Mazloomi Moqaddam et al. supplementary movie 3(Video)
Video 680.8 KB

Mazloomi Moqaddam et al. supplementary movie 4

Drop impact on a perfectly coated tapered macrotexture at a higher Weber number, We = 80. Liquid hits the base of the macrotexture, experiences a quick lateral extension and then detaches from the base, returns to the top of the posts, and finally the drop bounces off the surface.

Download Mazloomi Moqaddam et al. supplementary movie 4(Video)
Video 723.7 KB

Mazloomi Moqaddam et al. supplementary movie 5

Drop bouncing off a perfect coated tapered macrotexture at high Weber number, We = 120.

Download Mazloomi Moqaddam et al. supplementary movie 5(Video)
Video 722.2 KB

Mazloomi Moqaddam et al. supplementary movie 6

Impact on imperfectly coated posts at We = 80. Contact angle at the base of the posts and 10% above it set to θbottom=140°; for the rest of the solid the contact angle is θ=165°.

Download Mazloomi Moqaddam et al. supplementary movie 6(Video)
Video 1.3 MB

Mazloomi Moqaddam et al. supplementary movie 7

Impact on imperfectly coated posts at We = 120. Contact angle at the base of the posts and 10% above it set to θbottom=140°; for the rest of the solid the contact angle is θ=165°.

Download Mazloomi Moqaddam et al. supplementary movie 7(Audio)
Audio 1 MB

Mazloomi Moqaddam et al. supplementary movie 8

History of various components of the energy balance. Circle: Normalized kinetic energy K ̃; Downward triangle: Normalized surface energy S ̃; Upward triangle: Normalized dissipated energy Ξ ̃. Squares: Normalized energy balance K ̃+S ̃+Ξ ̃. Diamond: Normalized center-of-mass kinetic energy K cm. Impact on a perfectly coated SHS θ=165° at We = 30.

Download Mazloomi Moqaddam et al. supplementary movie 8(Video)
Video 2.6 MB

Mazloomi Moqaddam et al. supplementary movie 9

Impact on tapered posts tilted at 30°. At We = 31.2, the drop detaches from the surface after tcontact= 3.6 ms.

Download Mazloomi Moqaddam et al. supplementary movie 9(Video)
Video 1.5 MB