Published online by Cambridge University Press: 26 April 2006
We investigated experimentally the flows induced by a localized surfactant (oleic acid) on thin glycerol films. The oleic acid creates surface-tension gradients, which drive convention on the surface and within the film. Qualitative descriptions of the Lagrangian flow field were provided by flow-visualization experiments. Quantitative measurements of surface flows were conducted using dyed glycerol markers, where the initial motion of these markers is used to define the position of the time-dependent ‘convection front’. The flow characteristics were found to depend largely upon the magnitude of a gravitational parameter, G, representing the ratio of gravitational to surface-tension gradient (Marangoni) forces. Small G (G < 0.5) caused net outflow of the film leading to this thinning and, in some cases, to film rupture. When G < 1, bi-directional flows were caused by hydrostatic pressure gradients which served to stabilize the film. Additionally, the position of a surface convection front was found to differ significantly from that of the surfactant's leading edge for all G > 0. For this reason, surface markers may not be used to measure accurately the position of the droplet's leading edge. Finally, simulations of the Lagrangian flows conducted using the theory of Gaver & Grotberg (1990) compare favourably with these experimental results in the limit of dilute surfactant concentrations, and thus experimental verification of that theory is provided by this work. The results of this study may be useful for understanding the behaviour of the lung's thin-film lining after an aerosol droplet of insoluble exogenous surfactant lands upon its surface.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.