Hostname: page-component-6587cd75c8-2cm9h Total loading time: 0 Render date: 2025-04-23T20:04:07.416Z Has data issue: false hasContentIssue false

Droplet impact on a flexible disk

Published online by Cambridge University Press:  26 December 2024

Xinping Zhou
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
Yongqi Xu
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Qi Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Wanqiu Zhang
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
Ze-Rui Peng*
Affiliation:
Department of Mechanics, School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China Hubei Key Laboratory for Engineering Structural Analysis and Safety Assessment, Wuhan 430074, PR China
*
Email addresses for correspondence: [email protected]

Abstract

In this paper, we simulate the process of two-dimensional axisymmetric fluid–structure coupling of a droplet impacting on a flexible disk. The effects of dimensionless disk stiffness (K = 0.1–1000), Weber number (We = 1–500) and contact angle (θ = 130° and 60°) on the dynamics of the droplet impacting on the flexible disk are analysed. The results indicate that there are five typical impact modes for a hydrophobic surface (θ = 130°) and four typical impact modes for a hydrophilic surface (θ = 60°) within the range of considered parameters. The analysis of spreading factor reveals that a part of the energy is transferred to the substrate, which is manifested as a weakening of the droplet spreading, when the substrate deforms downwards due to the droplet impact; the squeezing of the droplet causes a tendency to flow from the centre of the droplet to the edge, which is manifested as an enhancement of the droplet spreading, when the substrate recovers from the downward deformation. The effect of the substrate flexibility on the maximum spreading factor depends on the competition of the two mechanisms above. Based on this, a modified scaling law of βmax has been proposed by introducing the effective Weber number (Wem). The analysis of impact force demonstrates that the peak of the impact force is related to the deflection of the flexible substrate which is different from that of a rigid wall; and three typical processes of impact force variation have been summarised. In addition, unlike the rigid substrate scenario, there is an energy interaction between the droplet and the flexible substrate after impact occurs, which is classified as three typical energy transformation processes.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abuku, M., Janssen, H., Poesen, J. & Roels, S. 2009 Impact, absorption and evaporation of raindrops on building facades. Build. Environ. 44 (1), 113124.CrossRefGoogle Scholar
Bergeron, V., Bonn, D., Martin, J.Y. & Vovelle, L. 2000 Controlling droplet deposition with polymer additives. Nature 405, 772775.CrossRefGoogle ScholarPubMed
Chandra, S. & Avedisian, C.T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432 (1884), 1341.Google Scholar
Chen, L., Bonaccurso, E., Deng, P. & Zhang, H. 2016 Droplet impact on soft viscoelastic surfaces. Phys. Rev. E 94 (6), 063117.CrossRefGoogle ScholarPubMed
Clanet, C., Béguin, C., Richard, D. & Quéré, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.CrossRefGoogle Scholar
Collings, E.W., Markworth, A.J., McCoy, J.K. & Saunders, J.H. 1990 Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J. Mater. Sci. 25, 36773682.CrossRefGoogle Scholar
Derby, B. 2010 Inkjet printing of functional and structural materials: fluid property requirements, feature stability and resolution. Annu. Rev. Mater. Res. 40, 395414.CrossRefGoogle Scholar
Deuflhard, P. 1974 A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting. Numer. Math. 22, 289315.CrossRefGoogle Scholar
Dressaire, E., Sauret, A., Boulogne, F. & Stone, H.A. 2016 Drop impact on a flexible fiber. Soft Matt. 12 (1), 200208.CrossRefGoogle ScholarPubMed
Du, J.Y., Chamakos, N.T., Papathanasiou, A.G., Li, Y.Z. & Min, Q. 2021 Jumping velocity of an electrowetting-actuated droplet: a theoretical and numerical study. Phys. Rev. Fluids 6 (12), 123603.CrossRefGoogle Scholar
Eggers, J., Fontelos, M., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.CrossRefGoogle Scholar
Gart, S., Mates, J.E., Megaridis, C.M. & Jung, S. 2015 Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. Appl. 3 (4), 044019.CrossRefGoogle Scholar
Gilet, T. & Bourouiba, L. 2015 Fluid fragmentation shapes rain-induced foliar disease transmission. J. R. Soc. Interface 12 (104), 20141092.CrossRefGoogle ScholarPubMed
Howland, C.J., Antkowiak, A., Castrejón-Pita, J.R., Howison, S.D., Oliver, J.M., Style, R.W. & Castrejón-Pita, A.A. 2016 It's harder to splash on soft solids. Phys. Rev. Lett. 117 (18), 184502.CrossRefGoogle ScholarPubMed
Huang, L., Song, J., Wang, X., Zhao, C., Liu, Z. & Liu, J. 2018 Soft elastic superhydrophobic cotton: a new material for contact time reduction in droplet bouncing. Surf. Coat. Technol. 347, 420426.CrossRefGoogle Scholar
Josserand, C. & Thoroddsen, S.T. 2016 Drop impact on a solid surface. Annu. Rev. Fluid Mech. 48, 365391.CrossRefGoogle Scholar
Jung, S., Tiwari, M.K., Doan, N.V. & Poulikakos, D. 2012 Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3 (1), 615.CrossRefGoogle ScholarPubMed
Kim, S., Wu, Z., Esmaili, E., Dombroskie, J.J. & Jung, S. 2020 How a raindrop gets shattered on biological surfaces. Proc. Natl Acad. Sci. USA 117 (25), 1390113907.CrossRefGoogle ScholarPubMed
Laan, N., Bruin, K., Bartolo, D., Josserand, C. & Bonn, D. 2014 Maximum diameter of impacting liquid droplets. Phys. Rev. Appl. 2, 044018.CrossRefGoogle Scholar
Lee, J.B., Laan, N., de Bruin, K.G., Skantzaris, G., Skantzaris, N., Derome, D., Carmeliet, J. & Bonn, D. 2016 Universal rescaling of drop impact on smooth and rough surfaces. J. Fluid Mech. 786, R4.CrossRefGoogle Scholar
Lohse, D. 2022 Fundamental fluid dynamics challenges in inkjet printing. Annu. Rev. Fluid Mech. 54, 349382.CrossRefGoogle Scholar
Ma, Y.F. & Huang, H.B. 2023 Scaling maximum spreading of droplet impacting on flexible substrates. J. Fluid Mech. 958, A35.CrossRefGoogle Scholar
Mangili, S., Antonini, C., Marengo, M. & Amirfazli, A. 2012 Understanding the drop impact phenomenon on soft PDMS substrates. Soft Matt. 8, 1004510054.CrossRefGoogle Scholar
Mishchenko, L., Hatton, B., Bahadur, V., Taylor, J.A., Krupenkin, T. & Aizenberg, J. 2010 Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4 (12), 76997707.CrossRefGoogle ScholarPubMed
Pegg, M., Purvis, R. & Korobkin, A. 2018 Droplet impact onto an elastic plate: a new mechanism for splashing. J. Fluid Mech. 839, 561593.CrossRefGoogle Scholar
Pepper, R.E., Courbin, L. & Stone, H.A. 2008 Splashing on elastic membranes: the importance of early-time dynamics. Phys. Fluids 20 (8), 082103.CrossRefGoogle Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.CrossRefGoogle Scholar
Turek, S. & Hron, J. 2006 Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. In Fluid-Structure Interaction. Lecture Notes in Computational Science and Engineering (ed. Bungartz, H.J. & Schäfer, M.), vol 53, pp. 371385. Springer.CrossRefGoogle Scholar
Sikalo, S., Marengo, M., Tropea, C. & Ganic, E.N. 2002 Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 25 (7), 503510.CrossRefGoogle Scholar
Vasileiou, T., Gerber, J., Prautzsch, J., Schutzius, T.M. & Poulikakos, D. 2016 Superhydrophobicity enhancement through substrate flexibility. Proc. Natl Acad. Sci. USA 113 (47), 1330713312.CrossRefGoogle ScholarPubMed
Vasileiou, T., Schutzius, T.M. & Poulikakos, D. 2017 Imparting icephobicity with substrate flexibility. Langmuir 33 (27), 67086718.CrossRefGoogle ScholarPubMed
Weisensee, P.B., Tian, J., Miljkovic, N. & King, W.P. 2016 Water droplet impact on elastic superhydrophobic surfaces. Sci. Rep. 6 (1), 30328.CrossRefGoogle ScholarPubMed
Wirth, W., Storp, S. & Jacobsen, W. 1991 Mechanisms controlling leaf retention of agricultural spray solutions. Pest. Sci. 33, 411420.CrossRefGoogle Scholar
Xiong, Y.F., Huang, H.B. & Lu, X.Y. 2020 Numerical study of droplet impact on a flexible substrate. Phys. Rev. E 101 (5), 053107.CrossRefGoogle ScholarPubMed
Yeoh, O.H. 1993 Some forms of the strain energy function for rubber. Rubber. Chem. Technol. 66, 754771.CrossRefGoogle Scholar
Zhang, B., Sanjay, V., Shi, S.L., Zhao, Y.G., Lv, C.J., Feng, X.Q. & Lohse, D. 2022 Impact forces of water drops falling on superhydrophobic surfaces. Phys. Rev. Lett. 129 (10), 104501.CrossRefGoogle ScholarPubMed