Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T16:57:13.019Z Has data issue: false hasContentIssue false

A drop of active matter

Published online by Cambridge University Press:  26 April 2012

Jean-François Joanny
Affiliation:
Physicochimie Curie (CNRS-UMR168, UPMC Université Paris VI), Institut Curie, Section de Recherche 26 rue d’Ulm, 75248 Paris CEDEX 05, France
Sriram Ramaswamy*
Affiliation:
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
*
Email address for correspondence: [email protected]

Abstract

We study theoretically the hydrodynamics of a fluid drop containing oriented filaments endowed with active contractile or extensile stresses and placed on a solid surface. The active stresses alter qualitatively the wetting properties of the drop, leading to new spreading laws and novel static drop shapes. Candidate systems for testing our predictions include cytoskeletal extracts with motors and ATP, suspensions of bacteria or pulsatile cells, or fluids laden with artificial self-propelled colloids.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Also at JNCASR, Bangalore 560 064, India.

References

1. Bartolo, D. & Lauga, E. 2010 Shaking-induced motility in suspensions of soft active particles. Phys. Rev. E 81, 026312.CrossRefGoogle ScholarPubMed
2. Baskaran, A. & Marchetti, M. C. 2009 Statistical mechanics and hydrodynamics of bacterial suspensions. Proc. Natl Acad. Sci. USA 106, 1556715572.CrossRefGoogle ScholarPubMed
3. Bees, M. A., Andresén, P., Mosekilde, E. & Givskov, M. 2000 The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens . J. Math. Biol. 40, 2763.CrossRefGoogle ScholarPubMed
4. Bees, M. A., Andresén, P., Mosekilde, E. & Givskov, M. 2002 Quantitative effects of medium hardness and nutrient availability on the swarming motility of Serratia liquefaciens . Bull. Math. Biol. 64, 565587.CrossRefGoogle ScholarPubMed
5. BenAmar, M. & Cummings, L. J. 2001 Fingering instabilities in driven thin nematic films. Phys. Fluids 15, 11601166.CrossRefGoogle Scholar
6. Cates, M. E., Fielding, S. M., Marenduzzo, D., Orlandini, E. & Yeomans, J. M. 2008 Shearing active gels close to the isotropic–nematic transition. Phys. Rev. Lett. 101, 068102.CrossRefGoogle Scholar
7. Chandrasekhar, S. 1992 Liquid Crystals. Cambridge University Press.CrossRefGoogle Scholar
8. Cisneros, L. H., Cortez, R., Dombrowski, C., Goldstein, R. E. & Kessler, J. O. 2007 Fluid dynamics of self-propelled microorganisms, from individuals to concentrated population. Exp. Fluids 43, 737753.CrossRefGoogle Scholar
9. DeGennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
10. DeGennes, P. G. & Prost, J. 1993 The Physics of Liquid Crystals. Clarendon.Google Scholar
11. Finlayson, B. A. & Scriven, L. E. 1969 Convective instability from active stress. Proc. R. Soc. Lond. A 310, 183219.Google Scholar
12. Giomi, L., Marchetti, M. C. & Liverpool, T. B. 2008 Complex spontaneous flows and concentration banding in active polar films. Phys. Rev. Lett. 101, 198101-1–198101-4.CrossRefGoogle ScholarPubMed
13. Gupta, V. K. & Abbott, N. L. 1999 Using droplets of nematic liquid crystal to probe the microscopic and mesoscopic structure of organic surfaces. Langmuir 15, 72137223.CrossRefGoogle Scholar
14. Hatwalne, Y., Ramaswamy, S., Rao, M. & Simha, R. A. 2004 Rheology of active-particle suspensions. Phys. Rev. Lett. 92, 118101-1–118101-4.CrossRefGoogle ScholarPubMed
15. Hernandez-Ortiz, J. P., Underhill, P. T. & Graham, M. D. 2009 Dynamics of confined suspensions of swimming particles. J. Phys.: Condens. Matter 21, 204107.Google ScholarPubMed
16. Hill, N. A. & Pedley, T. J. 2005 Bioconvection. Fluid Dyn. Res. 37, 120.CrossRefGoogle Scholar
17. Howse, J. R., Jones, R. A. L., Ryan, A. J., Gough, T., Vafabakhsh, R. & Golestanian, R. 2007 Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99, 048102.CrossRefGoogle ScholarPubMed
18. Ishikawa, T. 2009 Suspension biomechanics of swimming microbes. J. R. Soc. Interface 6, 815834.CrossRefGoogle ScholarPubMed
19. Joanny, J. F. & Prost, J. 2009 Active gels as a description of the actin-myosin cytoskeleton. HFSP Journal 3, 94104.CrossRefGoogle ScholarPubMed
20. Jülicher, F., Kruse, K., Prost, J. & Joanny, J. F. 2007 Active behaviour of the cytoskeleton. Phys. Rep. 449, 328.CrossRefGoogle Scholar
21. Kemkemer, R., Kling, D., Kaufmann, D. & Gruler, H. 2000 Elastic properties of nematoid arrangements formed by amoeboid cells. Eur. Phys. J. E 1, 215225.CrossRefGoogle Scholar
22. Koch, D. L. & Subramanian, G. 2011 Collective hydrodynamics of swimming microorganisms. Annu. Rev. Fluid Mech. 43, 637659.CrossRefGoogle Scholar
23. Kruse, K., Joanny, J. F., Jülicher, F., Prost, J. & Sekimoto, K. 2004 Asters, vortices, and rotating spirals in active gels of polar filaments. Phys. Rev. Lett. 92, 078101-1–078101-4.CrossRefGoogle ScholarPubMed
24. Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.CrossRefGoogle Scholar
25. Léger, L. & Joanny, J.-F. 1992 Liquid spreading. Rep. Prog. Phys. 55, 431486.CrossRefGoogle Scholar
26. Leslie, F. M. 1979 Theory of flow phenomena in liquid crystals. Adv. Liq. Cryst. 4, 1.CrossRefGoogle Scholar
27. Liverpool, T. B. & Marchetti, M. C. 2006 Rheology of active filament solutions. Phys. Rev. Lett. 97, 268101.CrossRefGoogle ScholarPubMed
28. Mehandia, V. & Nott, P. R. 2008 The collective dynamics of self-propelled particles. J. Fluid Mech. 595, 239264.CrossRefGoogle Scholar
29. Menon, G. I. 2010 Active matter. In Rheology of Complex Fluids (ed. Murali Krishnan, J., Deshpande, A. & Kumar, P. B. S. ), pp. 193218. Springer.CrossRefGoogle Scholar
30. Paxton, W. F., Kistler, K. C., Olmeda, C. C., Sen, A., Angelo, S. K. St., Cao, Y., Mallouk, T. E., Lammert, P. E. & Crespi, V. H. 2004 Catalytic nanomotors: autonomous movement of striped nanorods. J. Am. Chem. Soc. 126, 1342413431.CrossRefGoogle ScholarPubMed
31. Pedley, T. J. & Kessler, J. O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24, 313358.CrossRefGoogle Scholar
32. Poulard, C., Voue, M., Coninck, J. D. & Cazabat, A. M. 2006 Spreading of nematic liquid crystals on hydrophobic substrates. Colloids Surf. A 282–283, 240246.CrossRefGoogle Scholar
33. Rafaï, S., Peyla, P. & Jibuti, L. 2010 Effective viscosity of microswimmer suspensions. Phys. Rev. Lett. 104, 098102.CrossRefGoogle ScholarPubMed
34. Ramachandran, S., Kumar, P. B. S. & Pagonabarraga, I. 2006 A lattice-Boltzmann model for suspensions of self-propelling colloidal particles. Eur. Phys. J. E 20, 151158.CrossRefGoogle ScholarPubMed
35. Ramaswamy, S. 2010 The mechanics and statistics of active matter. Annu. Rev. Condens. Matt. Phys. 1, 323345.CrossRefGoogle Scholar
36. Saintillan, D. 2010 The dilute rheology of swimming suspensions: a simple kinetic model. Exp. Mech. 50, 12751285.CrossRefGoogle Scholar
37. Sankararaman, S. & Ramaswamy, S. 2009 Instabilities and waves in thin films of living fluids. Phys. Rev. Lett. 102, 118107-1–118107-4.CrossRefGoogle ScholarPubMed
38. Simha, R. A. & Ramaswamy, S. 2002 Hydrodynamic fluctuations and instabilities in ordered suspensions of self-propelled particles. Phys. Rev. Lett. 89, 058101-1–058101-4.Google Scholar
39. Sokolov, A. & Aranson, I. S. 2010 Reduction of viscosity in suspension of swimming bacteria. Phys. Rev. Lett. 103, 148101.CrossRefGoogle Scholar
40. Stone, H. 2005 On lubrication flows in geometries with zero local curvature. Chem. Engng Sci. 60, 48384845.CrossRefGoogle Scholar
41. Tanaka-Takiguchi, Y., Kakei, T., Tanimura, A., Takagi, A., Honda, M., Hotani, H. & Takiguchi, K. 2004 The elongation and contraction of actin bundles are induced by double-headed myosins in a motor concentration-dependent manner. J. Mol. Biol. 341, 467476.CrossRefGoogle Scholar
42. Toner, J., Tu, Y. & Ramaswamy, S. 2005 Hydrodynamics and phases of flocks. Ann. Phys. 318, 170244.CrossRefGoogle Scholar
43. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. 1999 Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 1120.CrossRefGoogle ScholarPubMed
44. Voituriez, R., Joanny, J. F. & Prost, J. 2005 Spontaneous flow transition in active polar gels. Europhys. Lett. 70, 404410.CrossRefGoogle Scholar
45. Voituriez, R., Joanny, J. F. & Prost, J. 2006 Generic phase diagram of active polar films. Phys. Rev. Lett. 96, 028102-1–028102-4.CrossRefGoogle ScholarPubMed
46. Yamaguchi, R. & Sato, S. 1996 Determination of nematic liquid crystal (NLC) orientation by observing NLC droplets on alignment surfaces. Japan J. Appl. Phys. 35, L117L119.CrossRefGoogle Scholar