Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-10T18:53:53.107Z Has data issue: false hasContentIssue false

Driving and damping mechanisms for transverse combustion instabilities in liquid rocket engines

Published online by Cambridge University Press:  02 May 2017

A. Urbano*
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France
L. Selle
Affiliation:
Institut de Mécanique des Fluides de Toulouse (IMFT) – Université de Toulouse, CNRS-INPT-UPS, Toulouse, France
*
Email address for correspondence: [email protected]

Abstract

This work presents the analysis of a transverse combustion instability in a reduced-scale rocket engine. The study is conducted on a time-resolved database of three-dimensional fields obtained via large-eddy simulation. The physical mechanisms involved in the response of the coaxial hydrogen/oxygen flames are discussed through the analysis of the Rayleigh term in the disturbance-energy equation. The interaction between acoustics and vorticity, also explicit in the disturbance-energy balance, is shown to be the main damping mechanism for this instability. The relative contributions of Rayleigh and damping terms, depending on the position of the flame with respect to the acoustic field, are discussed. The results give new insight into the phenomenology of transverse combustion instabilities. Finally, the applicability of spectral analysis on the nonlinear Rayleigh and dissipation terms is discussed.

Type
Rapids
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baillot, F., Blaisot, J.-B., Boisdron, G. & Dumouchel, C. 2009 Behaviour of an air-assisted jet submitted to a transverse high-frequency acoustic field. J. Fluid Mech. 640, 305342.CrossRefGoogle Scholar
Blumenthal, R. S., Subramanian, P., Sujith, R. I. & Polifke, W. 2013 Novel perspectives on the dynamics of premixed flames. Combust. Flame 160 (7), 12151224.Google Scholar
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1), 5165.CrossRefGoogle Scholar
Brear, M. J., Nicoud, F., Talei, M., Giauque, A. & Hawkes, E. R. 2012 Disturbance energy transport and sound production in gaseous combustion. J. Fluid Mech. 707, 5373.Google Scholar
Candel, S., Durox, D., Schuller, T., Bourgouin, J.-F. & Moeck, J. P. 2014 Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147173.Google Scholar
Courtine, E., Selle, L. & Poinsot, T. 2015 DNS of intrinsic thermoacoustic modes in laminar premixed flames. Combust. Flame 162 (11), 43314341.CrossRefGoogle Scholar
Giauque, A., Selle, L., Gicquel, L., Poinsot, T., Buechner, H., Kaufmann, P. & Krebs, W. 2012 System identification of a large-scale swirled partially premixed combustor using LES and measurements. J. Turbul. 6, N21.Google Scholar
Gröning, S., Hardi, J. S., Suslov, D. & Oschwald, M. 2016 Injector-driven combustion instabilities in a hydrogen/oxygen rocket combustor. J. Propul. Power 32 (3), 560573.CrossRefGoogle Scholar
Hakim, L., Schmitt, T., Ducruix, S. & Candel, S. 2015 Dynamics of a transcritical coaxial flame under a high-frequency transverse acoustic forcing: influence of the modulation frequency on the flame response. Combust. Flame 162, 34823502.Google Scholar
Hardi, J. S., Martinez, H. C. G., Oschwald, M. & Dally, B. B. 2014 LOx jet atomization under transverse acoustic oscillations. J. Propul. Power 30 (2), 337349.Google Scholar
Hoeijmakers, M., Kornilov, V., Lopez Arteaga, I., de Goey, P. & Nijmeijer, H. 2014 Intrinsic instability of flame–acoustic coupling. Combust. Flame 161 (11), 28602867.Google Scholar
Huo, H. & Yang, V. 2011 Supercritical LOX/methane combustion of a shear coaxial injector. In 49th AIAA Aerosp. Sci. Meet. Exhib., Orlando, FL.Google Scholar
Myers, M. K. 1991 Transport of energy by disturbances in arbitrary steady flows. J. Fluid Mech. 226, 383400.CrossRefGoogle Scholar
Poinsot, T. J., Trouve, A. C., Veynante, D. P., Candel, S. M. & Esposito, E. J. 1987 Vortex-driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265.Google Scholar
Rayleigh, Lord 1878 The explanation of certain acoustic phenomena. Nature 18, 319.Google Scholar
Rogers, D. E. & Marble, F. E. 1956 A mechanism for high-frequency oscillation in Ramjet combustors and afterburners. J. Jet Propul. 26 (6), 456462.CrossRefGoogle Scholar
Ruiz, A., Schmitt, T., Selle, L., Cuenot, B. & Poinsot, T. 2011 Effects of the recess length of a coaxial injector on a transcritical LO2/H2 jet flame. In 23rd ICDERS., Irvine, CA.Google Scholar
Schmid, P. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmitt, T., Méry, Y., Boileau, M. & Candel, S. 2011 Large-eddy simulation of oxygen/methane flames under transcritical conditions. Proc. Combust. Inst. 33 (1), 13831390.Google Scholar
Schuller, T., Durox, D. & Candel, S. 2003 A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics. Combust. Flame 134 (1–2), 2134.Google Scholar
Searby, G. & Rochwerger, D. 1991 A parametric instability in premixed flames. J. Fluid Mech. 231, 529543.CrossRefGoogle Scholar
Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.-U., Krebs, W., Prade, B., Kaufmann, P. & Veynante, D. 2004 Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137 (4), 489505.Google Scholar
Tucker, P., Menon, S., Merkle, C., Oefelein, J. & Yang, V. 2008 Validation of high-fidelity CFD simulations for rocket injector design. In 44th AIAA/ASME/SAE/ASEE Jt. Propuls. Conf. Exhib. AIAA Paper 2008-5226.Google Scholar
Urbano, A., Douasbin, Q., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S. & Candel, S. 2017 Study of flame response to transverse acoustic modes from the LES of a 42-injector rocket engine. Proc. Combust. Inst. 36, 26332639.Google Scholar
Urbano, A., Selle, L., Staffelbach, G., Cuenot, B., Schmitt, T., Ducruix, S. & Candel, S. 2016 Exploration of combustion instability triggering using large eddy simulation of a multiple injector liquid rocket engine. Combust. Flame 169, 129140.Google Scholar
Wolf, P., Staffelbach, G., Gicquel, L. Y. M., Müller, J.-D. & Poinsot, T. 2012 Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159 (11), 33983413.Google Scholar