Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T12:28:23.809Z Has data issue: false hasContentIssue false

Direct-simulation-based study of turbulent flow over various waving boundaries

Published online by Cambridge University Press:  24 March 2010

DI YANG
Affiliation:
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
LIAN SHEN*
Affiliation:
Department of Civil Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: [email protected]

Abstract

We use direct numerical simulation of stress-driven turbulent Couette flows over waving surfaces to study turbulence in the vicinity of water waves. Mechanistic study is performed through systematic investigation of different wavy surface conditions including plane progressive Airy and Stokes waves with and without wind-induced surface drift, as well as stationary wavy walls and vertically waving walls for comparison. Two different wave steepness values ak = 0.1 and 0.25 are considered, where a is the wave amplitude and k is the wavenumber. For effects of wave age, defined as the ratio between the wave phase speed c and the turbulence friction velocity u*, we consider three values, namely c/u* = 2, 14 and 25, corresponding to slow, intermediate and fast waves, respectively. Detailed analysis of turbulence structure and statistics shows their dependence on the above-mentioned parameters. Our result agrees with previous measurement and simulation results and reveals many new features unreported in the literature. Over progressive waves, although no apparent flow separation is found in mean flow, considerable intermittent separations in instantaneous flow are detected in slow waves with large steepness. The near-surface coherent vortical structures are examined. We propose two conceptual vortex structure models: quasi-streamwise and reversed horseshoe vortices for slow waves and bent quasi-streamwise vortices for intermediate and fast waves. Detailed examination of Reynolds stress with quadrant analysis, turbulent kinetic energy (TKE) and TKE budget with a focus on production shows large variation with wave phase; analysis shows that the variation is highly dependent on wave age and wave nonlinearity. Comparison between Airy waves and Stokes waves indicates that although the nonlinearity of surface water waves is a high-order effect compared with the wave age and wave steepness, it still makes an appreciable difference to the turbulence structure. The effect of wave nonlinearity on surface pressure distribution causes substantial difference in the wave growth rate. Wind-induced surface drift can cause a phase shift in the downstream direction and a reduction in turbulence intensity; this effect is appreciable for slow waves but negligible for intermediate and fast waves. In addition to providing detailed information on the turbulence field in the vicinity of wave surfaces, the results obtained in this study suggest the importance of including wave dynamics in the study of wind–wave interaction.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.CrossRefGoogle Scholar
Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.Google Scholar
Al-Zanaidi, M. A. & Hui, W. H. 1984 Turbulent airflow over water waves – a numerical study. J. Fluid Mech. 148, 225246.CrossRefGoogle Scholar
Babanin, A. V., Banner, M. L., Young, I. R. & Donelan, M. A. 2007 Wave-follower field measurements of the wind-input spectral function. Part III. Parameterization of the wind-input enhancement due to wave breaking. J. Phys. Oceanogr. 37, 27642775.CrossRefGoogle Scholar
Banner, M. L. 1990 The influence of wave breaking on the surface pressure distribution in wind–wave interactions. J. Fluid Mech. 211, 463495.CrossRefGoogle Scholar
Banner, M. L. & Melville, W. K. 1976 On the separation of air flow over water waves. J. Fluid Mech. 77, 825842.CrossRefGoogle Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interface. J. Fluid Mech. 364, 115145.CrossRefGoogle Scholar
Banner, M. L. & Phillips, O. M. 1974 On the incipient breaking of small scale waves. J. Fluid Mech. 65, 647656.Google Scholar
Belcher, S. E. & Hunt, J. C. R. 1993 Turbulent shear flow over slowly moving waves. J. Fluid Mech. 251, 109148.CrossRefGoogle Scholar
Belcher, S. E. & Hunt, J. C. R. 1998 Turbulent flow over hills and waves. Annu. Rev. Fluid Mech. 30, 507538.CrossRefGoogle Scholar
Bole, J. B. 1967 Response of gravity water waves to wind excitation. PhD thesis, Department of Civil Engineering, Stanford University, Palo Alto, CA.Google Scholar
Calhoun, R. J. & Street, R. J. 2001 Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. 106, 92779293.CrossRefGoogle Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Cherukat, P., Na, Y., Hanratty, T. J. & McLaughlin, J. B. 1998 Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theoret. Comput. Fluid Dyn. 11, 109134.CrossRefGoogle Scholar
Choi, H., Moin, P. & Kim, J. 1992 Direct numerical simulation of turbulent flow over riblets. CTR Manuscript 137. Center for Turbulence Research, Stanford University.Google Scholar
Cohen, J. E. & Belcher, S. E. 1999 Turbulent shear flow over fast-moving waves. J. Fluid Mech. 386, 345371.CrossRefGoogle Scholar
De Angelis, V., Lombardi, P. & Banerjee, S. 1997 Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids 9, 24292442.CrossRefGoogle Scholar
Dommermuth, D. G. & Yue, D. K. P. 1987 A high-order spectral method for the study of nonlinear gravity waves. J. Fluid Mech. 184, 267288.CrossRefGoogle Scholar
Donelan, M. A. 1999 Wind-induced growth and attenuation of laboratory waves. In Wind-Over-Wave Couplings: Perspectives and Prospects (ed. Aajjadi, S. G., Thomas, N. H. & Hunt, J. C. R.), pp. 183194. Clarendon.CrossRefGoogle Scholar
Donelan, M. A., Babanin, A. V., Young, I. R. & Banner, M. L. 2006 Wave-follower field measurements of the wind-input spectral function. Part II. Parameterization of the wind input. J. Phys. Oceanogr. 36, 16721689.Google Scholar
Donelan, M. A., Babanin, A. V., Young, I. R., Banner, M. L. & McCormick, C. 2005 Wave-follower field measurements of the wind-input spectral function. Part I. Measurements and calibrations. J. Atmos. Ocean. Technol. 22, 799813.CrossRefGoogle Scholar
Donelan, M. A., Haus, B. K., Reul, N., Plant, W. J., Stiassnie, M., Graber, H. C., Brown, O. B. & Saltzman, E. S. 2004 On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 31, L18306.CrossRefGoogle Scholar
Donelan, M. A. & Pierson, W. J. 1987 Radar scattering and equilibrium ranges in wind-generated waves with application to scatterometry. J. Geophys. Res. 92 (C5), 49715029.Google Scholar
Donelan, M. A. & Plant, W. J. 2009 A threshold for wind-wave growth. J. Geophys. Res. 114, C07012.Google Scholar
Fabrikant, A. L. 1976 Quasilinear theory of wind-wave generation. Izv. Atmos. Ocean. Phys. 12, 524526.Google Scholar
Gent, P. R. & Taylor, P. A. 1976 A numerical model of the air flow above water waves. J. Fluid Mech. 77, 105128.CrossRefGoogle Scholar
Gent, P. R. & Taylor, P. A. 1977 A note on ‘separation’ over short wind waves. Boundary-Layer Met. 11, 6587.CrossRefGoogle Scholar
Gong, W., Taylor, P. A. & Dörnbrack, A. 1996 Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J. Fluid Mech. 312, 137.CrossRefGoogle Scholar
Günther, A. & von Rohr, P. R. 2003 Large-scale structures in a developed flow over a wavy wall. J. Fluid Mech. 478, 257285.CrossRefGoogle Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
Henn, D. S. & Sykes, R. I. 1999 Large-eddy simulation of flow over wavy surfaces. J. Fluid Mech. 383, 75112.CrossRefGoogle Scholar
Hristov, T. S., Miller, S. D. & Friehe, C. A. 2003 Dynamical coupling of wind and ocean waves through wave-induced air flow. Nature 422, 5558.CrossRefGoogle ScholarPubMed
Hsu, C.-T., Hsu, E. Y. & Street, R. L. 1981 On the structure of turbulent flow over a progressive water wave: theory and experiment in a transformed, wave-following coordinate system. J. Fluid Mech. 105, 87117.CrossRefGoogle Scholar
Hsu, C.-T., Wu, H.-Y., Hsu, E.-Y. & Street, R. L. 1982 Momentum and energy transfer in wind generation of waves. J. Phys. Oceanogr. 12, 929951.2.0.CO;2>CrossRefGoogle Scholar
Hudson, J. D. 1993 The effect of a wavy boundary on a turbulent flow. PhD thesis, University of Illinois, Urbana, IL.Google Scholar
Hudson, J. D., Dykhno, L. & Hanratty, T. J. 1996 Turbulence production in flow over a wavy wall. Exps. Fluids 20, 257265.CrossRefGoogle Scholar
Hunt, J. C. R., Leibovich, S. & Richards, K. J. 1988 Turbulent shear flows over low hills. Q. J. R. Met. Soc. 114, 14351470.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241281.CrossRefGoogle Scholar
Janssen, P. A. E. M. 1982 Quasilinear approximation for the spectrum of wind-generated water waves. J. Fluid Mech. 117, 493506.CrossRefGoogle Scholar
Jeffreys, H. 1925 On the formation of water waves by wind. Proc. R. Soc. Lond. A 107, 189206.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jeong, J., Hussain, F., Schoppa, W. & Kim, J. 1997 Coherent structures near the wall in a turbulent channel flow. J. Fluid Mech. 332, 185214.CrossRefGoogle Scholar
Kihara, N., Hanazaki, H., Mizuya, T. & Ueda, H. 2007 Relationship between airflow at the critical height and momentum transfer to the traveling waves. Phys. Fluids 19, 015102.CrossRefGoogle Scholar
Kim, J. 1983 On the structure of wall-bounded turbulent flows. Phys. Fluids 26, 20882097.CrossRefGoogle Scholar
Kim, J. & Moin, P. 1985 Application of a fractional-step method to incompressible Navier–Stokes equations. J. Comput. Phys. 59, 308323.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Krettenauer, K. & Schumann, U. 1992 Numerical simulation of turbulent convection over wavy terrain. J. Fluid Mech. 237, 261299.CrossRefGoogle Scholar
Kruse, N., Günther, A. & von Rohr, P. R. 2003 Dynamics of large-scale structures in turbulent flow over a wavy wall. J. Fluid Mech. 485, 8796.CrossRefGoogle Scholar
Kudryavtsev, V. N., Makin, V. K. & Meirink, J. F. 2001 Simplified model of the air flow above the waves. Boundary-Layer Met. 100, 6390.CrossRefGoogle Scholar
Li, P. Y., Xu, D. & Taylor, P. A. 2000 Numerical modelling of turbulent airflow over water waves. Boundary-Layer Met. 95, 397425.CrossRefGoogle Scholar
Lighthill, M. J. 1962 Physical interpretation of the mathematical theory of wave generation by wind. J. Fluid Mech. 14, 385398.CrossRefGoogle Scholar
Lin, M.-Y., Moeng, C.-H., Tsai, W.-T., Sullivan, P. P. & Belcher, S. E. 2008 Direct numerical simulation of wind-wave generation processes. J. Fluid Mech. 616, 130.CrossRefGoogle Scholar
Maass, C. & Schumann, U. 1994 Numerical simulation of turbulent flow over a wavy boundary. Direct Large-Eddy Sim. 1, 287297.CrossRefGoogle Scholar
Maat, N. & Makin, V. K. 1992 Numerical simulation of air flow over breaking waves. Boundary-Layer Met. 60, 7793.CrossRefGoogle Scholar
Makin, V. K., Branger, H., Peirson, W. L. & Giovanangeli, J. P. 2007 Stress above wind-plus-paddle waves: modelling of a laboratory experiment. J. Phys. Oceanogr. 37, 28242837.CrossRefGoogle Scholar
Makin, V. K. & Kudryavtsev, V. N. 2002 Impact of dominant waves on sea drag. Boundary-Layer Met. 103, 8399.CrossRefGoogle Scholar
Makin, V. K., Kudryavtsev, V. N. & Mastenbroek, C. 1995 Drag of the sea surface. Boundary-Layer Met. 79, 159182.CrossRefGoogle Scholar
Mastenbroek, C. 1996 Wind–wave interaction. PhD thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
Mastenbroek, C., Makin, V. K., Garat, M. H. & Giovanangeli, J. P. 1996 Experimental evidence of the rapid distortion of turbulence in the air flow over water waves. J. Fluid Mech. 318, 273302.CrossRefGoogle Scholar
Meirink, J. F. & Makin, V. K. 2000 Modelling low-Reynolds-number effects in the turbulent air flow over water waves. J. Fluid Mech. 415, 155174.CrossRefGoogle Scholar
Miles, J. W. 1957 On the generation of surface waves by shear flows. J. Fluid Mech. 3, 185204.Google Scholar
Moin, P. & Kim, J. 1985 The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. J. Fluid Mech. 155, 441464.CrossRefGoogle Scholar
Moin, P. & Mahesh, K. 1998 Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539578.CrossRefGoogle Scholar
Nakagawa, S. & Hanratty, T. J. 2001 Particle image velocimetry measurements of flow over a wavy wall. Phys. Fluids 13, 35043507.CrossRefGoogle Scholar
Nakagawa, S., Na, Y. & Hanratty, T. J. 2003 Influence of a wavy boundary on turbulence. Part I. Highly rough surface. Exps. Fluids 35, 422436.CrossRefGoogle Scholar
Peirson, W. & Garcia, A. W. 2008 On the wind-induced growth of slow water waves of finite steepness. J. Fluid Mech. 608, 243274.CrossRefGoogle Scholar
Phillips, O. M. 1957 On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417445.CrossRefGoogle Scholar
Phillips, O. M. & Banner, M. L. 1974 Wave breaking in the presence of wind drift and swell. J. Fluid Mech. 66, 625640.CrossRefGoogle Scholar
Piomelli, U., Ferziger, J., Moin, P. & Kim, J. 1989 New approximate boundary conditions for large eddy simulations of wall-bounded fows. Phys. Fluids A 1, 10611068.Google Scholar
Plant, W. J. 1982 A relationship between wind stress and wave slope. J. Geophys. Res. 87, 19611967.Google Scholar
Reul, N., Branger, H. & Giovanangeli, J.-P. 1999 Air flow separation over unsteady breaking waves. Phys. Fluids 11, 19591961.CrossRefGoogle Scholar
Reul, N., Branger, H. & Giovanangeli, J.-P. 2008 Air flow structure over short-gravity breaking water waves. Boundary-Layer Met. 126, 477505.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.CrossRefGoogle Scholar
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes' expansion for gravity waves. J. Fluid Mech. 62, 553578.CrossRefGoogle Scholar
Shaikh, N. & Siddiqui, K. 2008 Airside velocity measurements over the wind-sheared water surface using particle image velocimetry. Ocean Dyn. 58, 6579.CrossRefGoogle Scholar
Shen, L., Zhang, X., Yue, D. K. P. & Triantafyllou, M. S. 2003 Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197221.CrossRefGoogle Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A. & Long, R. B. 1981 Array measurements of atmospheric pressure fluctuations above surface gravity waves. J. Fluid Mech. 102, 159.CrossRefGoogle Scholar
Stewart, R. H. 1970 Laboratory studies of the velocity field over deep-water waves. J. Fluid Mech. 42, 733754.CrossRefGoogle Scholar
Sullivan, P. P., Edson, J. B., Hristov, T. & McWilliams, J. C. 2008 Large-eddy simulations and observations of atmospheric marine boundary layers above nonequilibrium surface waves. J. Atmos. Sci. 65, 12251245.CrossRefGoogle Scholar
Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H. 2000 Simulation of turbulent flow over idealized water waves. J. Fluid Mech. 404, 4785.CrossRefGoogle Scholar
Taneda, S. & Tomonari, Y. 1974 An experiment on the flow around a waving plate. J. Phys. Soc. Japan 36, 16831689.CrossRefGoogle Scholar
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32, 3353.CrossRefGoogle Scholar
Tseng, Y.-H. & Ferziger, J. H. 2004 Large-eddy simulation of turbulent wavy boundary flow – illustration of vortex dynamics. J. Turbul. 5, 034.CrossRefGoogle Scholar
Ursell, F. 1956 Wave generation by wind. In Surveys in Mechanics (ed. Batchelor, G. K.), pp. 216249. Cambridge University Press.Google Scholar
Veron, F., Saxena, G. & Misra, S. K. 2007 Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett. 34, L19603.CrossRefGoogle Scholar
Wan, F., Porté-Agel, F. & Stoll, R. 2007 Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill. Atmos. Environ. 41, 27192728.CrossRefGoogle Scholar
Wu, J. 1973 Prediction of near-surface drift currents from wind velocity. J. Hydraul. Div. ASCE 99, 12911302.CrossRefGoogle Scholar
Yang, D. & Shen, L. 2009 Characteristics of coherent vortical structures in turbulent flows over progressive surface waves. Phys. Fluids. 21, 125106.CrossRefGoogle Scholar
Zedler, E. A. & Street, R. J. 2001 Large-eddy simulation of sediment transport: currents over ripples. J. Hydraul. Res. 127, 444452.CrossRefGoogle Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.CrossRefGoogle Scholar