Hostname: page-component-f554764f5-sl7kg Total loading time: 0 Render date: 2025-04-22T21:06:42.765Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulent, generalized Couette–Poiseuille flow

Published online by Cambridge University Press:  23 October 2024

Y. Zhang
Affiliation:
School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
D.I. Pullin
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, CA 91125, USA
W. Cheng*
Affiliation:
School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
X. Luo
Affiliation:
School of Engineering Science, University of Science and Technology of China, Hefei 230026, PR China
*
Email address for correspondence: [email protected]

Abstract

We present direct numerical simulation (DNS) and modelling of incompressible, turbulent, generalized Couette–Poiseuille flow. A particular example is specified by spherical coordinates $(Re,\theta,\phi )$, where $Re = 6000$ is a global Reynolds number, $\phi$ denotes the angle between the moving plate, velocity-difference vector and the volume-flow vector and $\tan \theta$ specifies the ratio of the mean volume-flow speed to the plate speed. The limits $\phi \to 0^\circ$ and $\phi \to 90^\circ$ give alignment and orthogonality, respectively, while $\theta \to 0^\circ,\ \theta \to 90^\circ$ correspond respectively to pure Couette flow in the $x$ direction and pure Poiseuille flow at angle $\phi$ to the $x$ axis. Competition between the Couette-flow shear and the forced volume flow produces a mean-velocity profile with directional twist between the confining walls. Resultant mean-speed profiles relative to each wall generally show a log-like region. An empirical flow model is constructed based on component log and log-wake velocity profiles relative to the two walls. This gives predictions of four independent components of shear stress and also mean-velocity profiles as functions of $(Re,\theta,\phi )$. The model captures DNS results including the mean-flow twist. Premultiplied energy spectra are obtained for symmetric flows with $\phi =90^\circ$. With increasing $\theta$, the energy peak gradually moves in the direction of increasing $k_x$ and decreasing $k_z$. Rotation of the energy spectrum produced by the faster moving velocity near the wall is also observed. Rapid weakening of a spike maxima in the Couette-type flow regime indicates attenuation of large-scale roll structures, which is also shown in the $Q$-criterion visualization of a three-dimensional time-averaged flow.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

del Álamo, J.C. & Jiménez, J. 2003 Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15 (6), L41L44.CrossRefGoogle Scholar
del Álamo, J.C., Jiménez, J., Zandonade, P. & Moser, R.D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2014 Velocity statistics in turbulent channel flow up to $Re_{\tau }=4000$. J. Fluid Mech. 742, 171191.CrossRefGoogle Scholar
Cheng, W., Pullin, D.I. & Samtaney, R. 2022 Wall-resolved and wall-modelled large-eddy simulation of plane Couette flow. J. Fluid Mech. 934, A19.CrossRefGoogle Scholar
Cheng, W., Pullin, D.I., Samtaney, R. & Luo, X. 2023 Numerical simulation of turbulent, plane parallel Couette-Poiseuille flow. J. Fluid Mech. 955, A4.CrossRefGoogle Scholar
Choi, Y.K., Lee, J.H. & Hwang, J. 2021 Direct numerical simulation of a turbulent plane Couette-Poiseuille flow with zero-mean shear. Intl J. Heat Fluid Flow 90, 108836.CrossRefGoogle Scholar
Coleman, G.N., Pirozzoli, S., Quadrio, M. & Spalart, P.R. 2017 Direct numerical simulation and theory of a wall-bounded flow with zero skin friction. Flow Turbul. Combust. 99, 553564.CrossRefGoogle ScholarPubMed
Gandía-Barberá, S., Hoyas, S., Oberlack, M. & Kraheberger, S. 2018 Letter: the link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow. Phys. Fluids 30 (4), 041702.CrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to $Re_\tau =2003$. Phys. Fluids 18 (1), 011702.CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.CrossRefGoogle Scholar
Jodai, Y. & Elsinga, G.E. 2016 Experimental observation of hairpin auto-generation events in a turbulent boundary layer. J. Fluid Mech. 795, 611633.CrossRefGoogle Scholar
Jones, M.B., Marusic, I. & Perry, A.E. 2001 Evolution and structure of sink-flow turbulent boundary layers. J. Fluid Mech. 428, 127.CrossRefGoogle Scholar
von Kármán, T. 1930 Mechanische ahnlichten und turbulenz. In Proc. Third Intern. Congr. Appl. Mech., vol. 1, pp. 85–93.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Kitoh, O., Nakabyashi, K. & Nishimura, F. 2005 Experimental study on mean velocity and turbulence characteristics of plane Couette flow: low-Reynolds-number effects and large longitudinal vortical structure. J. Fluid Mech. 539, 199227.CrossRefGoogle Scholar
Lee, J.H., Sung, H.J. & Adrian, R.J. 2019 Space–time formation of very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 881, 10101047.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2015 Direct numerical simulation of turbulent channel flow up to ${Re}_{\tau }\approx 5200$. J. Fluid Mech. 774, 395415.CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2018 Extreme-scale motions in turbulent plane Couette flows. J. Fluid Mech. 842, 128145.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re_\tau =4200$. Phys. Fluids 26 (1), 011702.CrossRefGoogle Scholar
Luchini, P. 2018 Structure and interpolation of the turbulent velocity profile in parallel flow. Eur. J. Mech. B/Fluids 71, 1534.CrossRefGoogle Scholar
Millikan, C.B. 1938 A critical discussion of turbulent flows in channels and circular tubes. In Proc. Fifth Intern. Congr. Appl. Mech., pp. 386–392.Google Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_\tau =590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Nagib, H.M. & Chauhan, K.A. 2008 Variations of von Kármán coefficient in canonical flows. Phys. Fluids 20 (10), 101518.CrossRefGoogle Scholar
Nakabayashi, K., Kitoh, O. & Katoh, Y. 2004 Similarity laws of velocity profiles and turbulence characteristics of Couette-Poiseuille turbulent flows. J. Fluid Mech. 507, 4369.CrossRefGoogle Scholar
Orlandi, P., Bernardini, M. & Pirozzoli, S. 2015 Poiseuille and Couette flows in the transitional and fully turbulent regime. J. Fluid Mech. 770, 424441.CrossRefGoogle Scholar
Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2016 The near-wall region of highly turbulent Taylor–Couette flow. J. Fluid Mech. 788, 95117.CrossRefGoogle Scholar
Perry, A.E., Henbest, S. & Chong, M.S. 1986 A theoretical and experimental study of wall turbulence. J. Fluid Mech. 165, 163199.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2011 Large-scale motions and inner/outer layer interactions in turbulent Couette-Poiseuille flows. J. Fluid Mech. 680, 534563.CrossRefGoogle Scholar
Pirozzoli, S., Bernardini, M. & Orlandi, P. 2014 Turbulence statistics in Couette flow at high Reynolds number. J. Fluid Mech. 758, 327343.CrossRefGoogle Scholar
Telbany, M.M.M.E. & Reynolds, A.J. 1980 Velocity distributions in plane turbulent channel flows. J. Fluid Mech. 100 (1), 129.CrossRefGoogle Scholar
Thurlow, E.M. & Klewicki, J.C. 2000 Experimental study of turbulent Poiseuille–Couette flow. Phys. Fluids 12 (4), 865875.CrossRefGoogle Scholar
Tillmark, N. & Alfredsson, P.H. 1998 Large scale structures in turbulent plane Couette flow. In Advances in Turbulence VII, pp. 59–62. Springer.CrossRefGoogle Scholar
Tsukahara, T., Kawamura, H. & Shingai, K. 2006 DNS of turbulent Couette flow with emphasis on the large-scale structure in the core region. J. Turbul. 7, N19.CrossRefGoogle Scholar
Wei, T., Fife, P. & Klewicki, J. 2007 On scaling the mean momentum balance and its solutions in turbulent Couette-Poiseuille flow. J. Fluid Mech. 573, 371C398.CrossRefGoogle Scholar
Yang, K., Zhao, L. & Andersson, H.I. 2017 Turbulent Couette-Poiseuille flow with zero wall shear. Intl J. Heat Fluid Flow 63, 1427.CrossRefGoogle Scholar