Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T13:48:46.977Z Has data issue: false hasContentIssue false

Direct numerical simulation of turbulent channel flow over random rough surfaces

Published online by Cambridge University Press:  15 December 2020

Rong Ma
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN55455, USA
Karim Alamé
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN55455, USA
Krishnan Mahesh*
Affiliation:
Department of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, MN55455, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulation of flow in a turbulent channel with a random rough bottom wall is performed at friction Reynolds number $Re_{\tau }=400$ and $600$. The rough surface corresponds to the experiments of Flack et al. (Flow Turbul. Combust., vol. 104, 2020, pp. 317–329). The computed skin-friction coefficients and the roughness functions show good agreement with experimental results. The double-averaging methodology is used to investigate mean velocity, Reynolds stresses, dispersive flux and mean momentum balance. The roll-up of the shear layer on the roughness crests is identified as a primary contributor to the wall-normal momentum transfer. The mean-square pressure fluctuations increase in the roughness layer and collapse onto their smooth-wall levels away from the wall. The dominant source terms in the pressure Poisson equation are examined. The rapid term shows that high pressure fluctuations observed in front of and above the roughness elements are mainly due to the attached shear layer formed upstream of the protrusions. The contribution of the slow term is smaller. The slow term is primarily increased in the troughs and in front of the roughness elements, corresponding to the occurrence of quasi-streamwise vortices and secondary vortical structures. The mean wall shear on the rough surface is highly correlated with the roughness height, and depends on the local roughness topography. The probability distribution function of wall shear stress fluctuations is consistent with higher velocities at roughness crests and reverse flow in the valley regions. Extreme events are more probable due to the roughness. Events with comparable magnitudes of the streamwise and spanwise wall shear stress occur more frequently, corresponding to a more isotropic vorticity field in the roughness layer.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, H., Kawamura, H. & Choi, H. 2004 Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to $Re_{\tau }= 640$. Trans. ASME: J. Fluids Engng 126 (5), 835843.Google Scholar
Alamé, K. & Mahesh, K. 2019 Wall-bounded flow over a realistically rough superhydrophobic surface. J. Fluid Mech. 873, 9771019.CrossRefGoogle Scholar
Anantharamu, S. & Mahesh, K. 2020 Analysis of wall-pressure fluctuation sources from direct numerical simulation of turbulent channel flow. J. Fluid Mech. 898, A17.CrossRefGoogle Scholar
Anderson, W., Barros, J. M., Christensen, K. T. & Awasthi, A. 2015 Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316347.CrossRefGoogle Scholar
Ashrafian, A., Andersson, H. I. & Manhart, M. 2004 DNS of turbulent flow in a rod-roughened channel. Intl J. Heat Fluid Flow 25 (3), 373383.CrossRefGoogle Scholar
Bailey, B. N. & Stoll, R. 2013 Turbulence in sparse, organized vegetative canopies: a large-eddy simulation study. Boundary-Layer Meteorol. 147 (3), 369400.CrossRefGoogle Scholar
Barros, J. M., Schultz, M. P. & Flack, K. A. 2018 Measurements of skin-friction of systematically generated surface roughness. Int. J. Heat Fluid Flow 72, 17.CrossRefGoogle Scholar
Bechert, D. W., Bruse, M., Hage, W., Van der Hoeven, J. G. T. & Hoppe, G. 1997 Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 5987.CrossRefGoogle Scholar
Bhaganagar, K., Coleman, G. & Kim, J. 2007 Effect of roughness on pressure fluctuations in a turbulent channel flow. Phys. Fluids 19 (2), 028103.CrossRefGoogle Scholar
Bons, J. P., Taylor, R. P., McClain, S. T. & Rivir, R. B. 2001 The many faces of turbine surface roughness. J. Turbomachinery 123 (4), 739--748.CrossRefGoogle Scholar
Busse, A., Lützner, M. & Sandham, N. D. 2015 Direct numerical simulation of turbulent flow over a rough surface based on a surface scan. Comput. Fluids 116, 129147.CrossRefGoogle Scholar
Busse, A., Thakkar, M. & Sandham, N. D. 2017 Reynolds-number dependence of the near-wall flow over irregular rough surfaces. J. Fluid Mech. 810, 196224.CrossRefGoogle Scholar
Cardillo, J., Chen, Y., Araya, G., Newman, J., Jansen, K. & Castillo, L. 2013 DNS of a turbulent boundary layer with surface roughness. J. Fluid Mech. 729, 603637.CrossRefGoogle Scholar
Chang III, P. A., Piomelli, U. & Blake, W. K. 1999 Relationship between wall pressure and velocity-field sources. Phys. Fluids 11 (11), 34343448.CrossRefGoogle Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Meteorol. 104 (2), 229259.CrossRefGoogle Scholar
Coceal, O., Thomas, T. G. & Belcher, S. E. 2007 Spatial variability of flow statistics within regular building arrays. Boundary-Layer Meteorol. 125 (3), 537552.CrossRefGoogle Scholar
Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Meteorol. 121 (3), 491519.CrossRefGoogle Scholar
Diaz-Daniel, C., Laizet, S. & Vassilicos, J. C. 2017 Wall shear stress fluctuations: mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer. Phys. Fluids 29 (5), 055102.CrossRefGoogle Scholar
Flack, K. A. & Schultz, M. P. 2010 Review of hydraulic roughness scales in the fully rough regime. Trans. ASME: J. Fluids Engng 132 (4), 041203.Google Scholar
Flack, K. A., Schultz, M. P. & Barros, J. M. 2020 Skin friction measurements of systematically-varied roughness: probing the role of roughness amplitude and skewness. Flow Turbul. Combust. 104, 317329.CrossRefGoogle Scholar
Flack, K. A., Schultz, M. P. & Shapiro, T. A. 2005 Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls. Phys. Fluids 17 (3), 035102.CrossRefGoogle Scholar
Forooghi, P., Stroh, A., Schlatter, P. & Frohnapfel, B. 2018 Direct numerical simulation of flow over dissimilar, randomly distributed roughness elements: a systematic study on the effect of surface morphology on turbulence. Phys. Rev. Fluids 3 (4), 044605.CrossRefGoogle Scholar
Jelly, T. O. & Busse, A. 2018 Reynolds and dispersive shear stress contributions above highly skewed roughness. J. Fluid Mech. 852, 710724.CrossRefGoogle Scholar
Jelly, T. O. & Busse, A. 2019 Reynolds number dependence of Reynolds and dispersive stresses in turbulent channel flow past irregular near-Gaussian roughness. Intl J. Heat Fluid Flow 80, 108485.CrossRefGoogle Scholar
Jeon, S., Choi, H., Yoo, J. Y. & Moin, P. 1999 Space–time characteristics of the wall shear-stress fluctuations in a low-Reynolds-number channel flow. Phys. Fluids 11 (10), 30843094.CrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Johansson, A. V., Her, J.-Y. & Haritonidis, J. H. 1987 On the generation of high-amplitude wall-pressure peaks in turbulent boundary layers and spots. J. Fluid Mech. 175, 119142.CrossRefGoogle Scholar
Jouybari, M. A., Brereton, G. J. & Yuan, J. 2019 Turbulence structures over realistic and synthetic wall roughness in open channel flow at $Re_{\tau }$. J. Turbul. 20, 723749.Google Scholar
Khoo, B. C., Chew, Y. T. & Teo, C. J. 2001 Near-wall hot-wire measurements. Exp. Fluids 31 (5), 494505.CrossRefGoogle Scholar
Kirschner, C. M. & Brennan, A. B. 2012 Bio-inspired antifouling strategies. Annu. Rev. Mater. Res. 42, 211229.CrossRefGoogle Scholar
Lee, J. H., Sung, H. J. & Krogstad, P. 2011 Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J. Fluid Mech. 669, 397431.CrossRefGoogle Scholar
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24 (3), 035110.CrossRefGoogle Scholar
Li, Y., Alame, K. & Mahesh, K. 2017 Feature-resolved computational and analytical study of laminar drag reduction by superhydrophobic surfaces. Phys. Rev. Fluids 2 (5), 054002.CrossRefGoogle Scholar
Ligrani, P. M. & Moffat, R. J. 1986 Structure of transitionally rough and fully rough turbulent boundary layers. J. Fluid Mech. 162, 6998.CrossRefGoogle Scholar
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to $Re _{\tau }= 4200$. Phys. Fluids 26 (1), 011702.CrossRefGoogle Scholar
Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197 (1), 215240.CrossRefGoogle Scholar
Mehdi, F., Klewicki, J. C. & White, C. M. 2010 Mean momentum balance analysis of rough-wall turbulent boundary layers. Physica D 239 (14), 13291337.CrossRefGoogle Scholar
Mejia-Alvarez, R. & Christensen, K. T. 2010 Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22 (1), 015106.CrossRefGoogle Scholar
Meyers, T., Forest, J. B. & Devenport, W. J. 2015 The wall-pressure spectrum of high-Reynolds-number turbulent boundary-layer flows over rough surfaces. J. Fluid Mech. 768, 261293.CrossRefGoogle Scholar
Mignot, E., Barthélemy, E. & Hurther, D. 2009 Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J. Fluid Mech. 618, 279303.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to $Re_{\tau }= 590$. Phys. Fluids 11 (4), 943945.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2012 Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 2856.CrossRefGoogle Scholar
Nikuradse, J. 1933 Laws of flow in rough pipes. Technical Memorandum 1292. NACA.Google Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two-and three-dimensional roughness. J. Turbul. 7, N73.CrossRefGoogle Scholar
Örlü, R. & Schlatter, P. 2011 On the fluctuating wall-shear stress in zero pressure-gradient turbulent boundary layer flows. Phys. Fluids 23 (2), 021704.CrossRefGoogle Scholar
Panton, R. L., Lee, M. & Moser, R. D. 2017 Correlation of pressure fluctuations in turbulent wall layers. Phys. Rev. Fluids 2 (9), 094604.CrossRefGoogle Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44 (1), 125.CrossRefGoogle Scholar
Raupach, M. R. & Shaw, R. H. 1982 Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol. 22 (1), 7990.CrossRefGoogle Scholar
Schlichting, H. 1936 Experimentelle untersuchungen zum rauhigkeitsproblem. Arch. Appl. Mech. 7 (1), 134.Google Scholar
Townsend, A. A. R. 1980 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wu, Y. & Christensen, K. T. 2007 Outer-layer similarity in the presence of a practical rough-wall topography. Phys. Fluids 19 (8), 085108.CrossRefGoogle Scholar
Yuan, J. & Jouybari, M. A. 2018 Topographical effects of roughness on turbulence statistics in roughness sublayer. Phys. Rev. Fluids 3 (11), 114603.CrossRefGoogle Scholar
Yuan, J. & Piomelli, U. 2014 Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15 (6), 350365.CrossRefGoogle Scholar