Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T22:10:28.305Z Has data issue: false hasContentIssue false

Direct numerical simulation of three-dimensional turbulent rough channels: parameterization and flow physics

Published online by Cambridge University Press:  10 July 2008

P. ORLANDI
Affiliation:
Dipartimento di Meccanica e Aeronautica Università La Sapienza, Via Eudossiana 18, 00184, Roma, Italy
S. LEONARDI
Affiliation:
Department of Mechanical Engineering, University of Puerto Rico at Mayaguez, Mayaguez 00680-9045Puerto Rico

Abstract

Direct numerical simulations of the three-dimensional flow past rough surfaces with elements of different shapes are performed to create a database. Our main interest is in finding a new parameterization for turbulent rough flows, which, so far, has been based on the concept of equivalent sand grain height or on the net separation between k and d type roughnesses. The new parameterization permits us to find a simple expression for the roughness function and the root mean square of the normal velocity fluctuation at the plane of the crests. We also wish to find statistical quantities characterizing the effects of the different rough surfaces: one is the ratio between mean flow and turbulence time scales (Sq/ε), the other is the helicity density. Passive scalar visualizations evince a reduction of the wall streak coherence, and the absence of a signature of the rough surfaces on the passive scalar distribution. The tendency towards a flow isotropy near the roughness has been explained also through Sq/ε.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

del Álamo, J. C., Jiménez, J., Zandonade, P. & Moser, R. D. 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.CrossRefGoogle Scholar
Bandyopadhyay, P. R. 1987 Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech. 180, 231266.CrossRefGoogle Scholar
Belcher, S. E., Jerram, N. & Hunt, J. C. R. 2003 Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369398.CrossRefGoogle Scholar
Bhaganagar, K., Kim, J. & Coleman, G. 2004 Effect of roughness on wall-bounded turbulence. Flow Turbulence Combust. 72, 463492.CrossRefGoogle Scholar
Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R. A. 2008 Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid Mech. 600, 403426.CrossRefGoogle Scholar
Cheng, H. & Castro, I. P. 2002 Near wall flow over urban-like roughness. Boundary-Layer Met. 104, 229259.CrossRefGoogle Scholar
Clauser, F. H. 1954 Turbulent boundary layers in adverse pressure gradients. J. Aero. Sci. 21, 91109.CrossRefGoogle Scholar
Coceal, O., Thomas, T. G., Castro, I. P. & Belcher, S. E. 2006 Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Boundary-Layer Met. 121, 491519.CrossRefGoogle Scholar
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 3560.CrossRefGoogle Scholar
Flores, O. & Jiménez, J. 2006 Effect of wall-boundary disturbances on turbulent channel flows. J. Fluid Mech. 566, 357376.CrossRefGoogle Scholar
Furuya, Y., Miyata, M. & Fujita, H. 1976 Turbulent boundary layer and flow resistance on plates roughened by wires. Trans. ASME I: J. Fluids Engng 98, 635644.Google Scholar
Good, K. & Belcher, S. E. 1999 On the parameterisation of the effective roughness length for momentum transfer over heterogeneous terrain. Boundary-Layer Met. 93, 133154.CrossRefGoogle Scholar
Hama, F. R. 1954 Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Nav. Archit. Mar. Engrs 62, 333358.Google Scholar
Jiménez, J. 2004 Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36, 173196.CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.CrossRefGoogle Scholar
Lee, M. J., Kim, J. & Moin, P. 1990 Structure of turbulence at high shear rate. J. Fluid Mech. 216, 561583.CrossRefGoogle Scholar
Leonardi, S. & Orlandi, P. 2004 A numerical method for turbulent flows over complex geometries. ERCOFTAC Bull. 62, 4146.Google Scholar
Leonardi, S., Orlandi, P., Smalley, R. J., Djenidi, L. & Antonia, R. A. 2003 Direct numerical simulations of turbulent channel flow with transverse square bars on the wall. J. Fluid Mech. 491, 229238.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R. A. 2004 Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow 25, 384392.CrossRefGoogle Scholar
Leonardi, S., Orlandi, P. & Antonia, R. A. 2005 A method for determining the frictional velocity in a turbulent channel flow with roughness on the bottom wall. Exps. Fluids 38, 796800.CrossRefGoogle Scholar
Leonardi, S., Tessicini, F., Orlandi, P. & Antonia, R. A. 2006 DNS and LES of turbulent flows over rough surfaces. AIAA J. 44, 24822487.CrossRefGoogle Scholar
Leonardi, S., Orlandi, p. & Antonia, R. A. 2007 Properties of d and k type roughness in a turbulent channel flow. Phys. Fluids. 19, Dec.CrossRefGoogle Scholar
Nikuradse, J. 1933 Stromungsgesetze in rauhen rohren. Forsch. Ing.-Wes. No. 361. Also Laws of flow in rough pipes. NACA TM 1292 (1950).Google Scholar
Orlandi, P. 1989 Numerical solution of 3-D flows periodic in one direction and with complex geometries in 2-D. Annu. Res. Briefs, Center for Turbulence Res. pp. 215–230.Google Scholar
Orlandi, P. 1997 Helicity fluctuations in rotating and non-rotating pipes. Phys. Fluids A 9, 20452056.CrossRefGoogle Scholar
Orlandi, P. 2000 Fluid Flow Phenomena: A Numerical Toolkit. Kluwer.CrossRefGoogle Scholar
Orlandi, P. & Leonardi, S. 2006 DNS of turbulent channel flows with two and three-dimensional roughness. J. Turbulence 7, no. 53.CrossRefGoogle Scholar
Orlandi, P., Leonardi, S., Tuzi, R. & Antonia, R. A. 2003 DNS of turbulent channel flow with wall velocity disturbances. Phys. Fluids 15, 34973600.CrossRefGoogle Scholar
Orlandi, P., Leonardi, S. & Antonia, R. A. 2006 Turbulent channel flow with either transverse or longitudinal roughness elements on one wall. J. Fluid Mech. 561, 279305.CrossRefGoogle Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.CrossRefGoogle Scholar
Raupach, M. R., Antonia, R. A. & Rajagopalan, S. 1991 Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 125.CrossRefGoogle Scholar
Rogers, M. M. & Moin, P. 1987 Helicity fluctuation in incompressible turbulent flows. Phys. Fluids 30, 26622671.CrossRefGoogle Scholar
Schlichting, H. 1936 Experimental investigation of surface roughness. NACA TM 823.Google Scholar
Sen, M., Bhaganagar, K. & Juttijudata, V. 2007 Application of proper orthogonal decomposition (POD) to investigate turbulent boundary layer in a channel with rough-walls. J. Turbulence 8, no. 41.CrossRefGoogle Scholar
Yakhot, A., Grinberg, L. & Nikitin, N. 2005 Modeling rough stenoses by an immersed-boundary method. J. Biomech. 38, 11151127.CrossRefGoogle ScholarPubMed
Waigh, D. R. & Kind, R. J. 1998 Improved aerodynamic charaterization of regular three-dimensional roughness. AIAA J. 36 11171119.CrossRefGoogle Scholar