Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T09:12:39.824Z Has data issue: false hasContentIssue false

Dilute suspension of neutrally buoyant particles in viscoelastic turbulent channel flow

Published online by Cambridge University Press:  18 July 2019

Amir Esteghamatian
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Tamer A. Zaki*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations of viscoelastic turbulent channel flow laden with neutrally buoyant spherical particles are performed. Two FENE-P viscoelastic and one Newtonian fluid are examined, and for each the particle-laden configuration is contrasted to a reference condition without seeding. The size of the particles is larger than the dissipation length scale, and their presence enhances drag in a manner that is intrinsically different in the viscoelastic and Newtonian flows. While the particles effectively suppress the turbulence activity, they significantly enhance the polymer stresses. The polymer chains are markedly stretched in the vicinity of the particles, altering the correlation between the turbulence and polymer work that is commonly observed in single-phase viscoelastic turbulence. At the lower elasticity, the particles enhance the cycle of hibernating and active turbulence and, in turn, their migration and volume-fraction profiles are qualitatively altered by the intermittency of the turbulence. Particle–fluid momentum transfer is investigated by estimating the local fluid field on a trimmed spherical shell around the individual particles. And by comparing the particle microstructures, a lower probability of particle alignment in the streamwise direction is observed in the viscoelastic configuration. This effect is attributed to a qualitative difference in the conditionally averaged velocity fields in the vicinity of the particles in the Newtonian and viscoelastic flows.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, A., Brandt, L. & Zaki, T. A. 2014 Linear and nonlinear evolution of a localized disturbance in polymeric channel flow. J. Fluid Mech. 760, 278303.Google Scholar
Ardekani, M. N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.Google Scholar
Asmolov, E. S. 1999 The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381, 6387.Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.Google Scholar
Barbati, A. C., Desroches, J., Robisson, A. & McKinley, G. H. 2016 Complex fluids and hydraulic fracturing. Annu. Rev. Chem. Biomol. Engng 7, 415453.Google Scholar
Biancofiore, L., Brandt, L. & Zaki, T. A. 2017 Streak instability in viscoelastic Couette flow. Phys. Rev. Fluids 2, 043304.Google Scholar
Breugem, W. P. 2012 A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J. Comput. Phys. 231 (13), 44694498.Google Scholar
Capecelatro, J., Desjardins, O. & Fox, R. O. 2018 On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech. 845, 499519.Google Scholar
Caporaloni, M., Tampieri, F., Trombetti, F. & Vittori, O. 1975 Transfer of particles in nonisotropic air turbulence. J. Atmos. Sci. 32, 565568.Google Scholar
Choueiri, G. H., Lopez, J. M. & Hof, B. 2018 Exceeding the asymptotic limit of polymer drag reduction. Phys. Rev. Lett. 120 (12), 124501.Google Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.Google Scholar
Costa, P., Picano, F., Brandt, L. & Breugem, W. P. 2016 Universal scaling laws for dense particle suspensions in turbulent wall-bounded flows. Phys. Rev. Lett. 117 (13), 15.Google Scholar
Costa, P., Picano, F., Brandt, L. & Breugem, W. P. 2018 Effects of the finite particle size in turbulent wall-bounded flows of dense suspensions. J. Fluid Mech. 843, 450478.Google Scholar
Dallas, V., Vassilicos, J. C. & Hewitt, G. F. 2010 Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E 82 (6), 119.Google Scholar
D’Avino, G., Greco, F. & Maffettone, P. L. 2017 Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49 (1), 341360.Google Scholar
D’Avino, G., Hulsen, M. A. & Maffettone, P. L. 2013 Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel. Comput. Fluids 86, 4555.Google Scholar
D’Avino, G., Hulsen, M. A., Snijkers, F., Vermant, J., Greco, F. & Maffettone, P. L. 2008 Rotation of a sphere in a viscoelastic liquid subjected to shear flow. Part I. Simulation results. J. Rheol. 52 (6), 13311346.Google Scholar
De Lillo, F., Boffetta, G. & Musacchio, S. 2012 Control of particle clustering in turbulence by polymer additives. Phys. Rev. E 85 (3), 16.Google Scholar
Doan, Q. T., Doan, L. T., Farouq Ali, S. M. & Oguztoreli, M. 1998 Sand deposition inside a horizontal well – a simulation approach. In Annual Technical Meeting of the Petroleum Society of Canada, vol. 39, p. 13. Petroleum Society of Canada.Google Scholar
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74 (4), 311329.Google Scholar
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.Google Scholar
Einarsson, J., Yang, M. & Shaqfeh, E. S. G. 2018 Einstein viscosity with fluid elasticity. Phys. Rev. Fluids 3 (1), 013301.Google Scholar
Ferrante, A. & Elghobashi, S. 2003 On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Phys. Fluids 15 (2), 315329.Google Scholar
Fornari, W., Formenti, A., Picano, F. & Brandt, L. 2016 The effect of particle density in turbulent channel flow laden with finite size particles in semi-dilute conditions. Phys. Fluids 28 (3).Google Scholar
Frank, X. & Li, H. Z. 2006 Negative wake behind a sphere rising in viscoelastic fluids: a lattice Boltzmann investigation. Phys. Rev. E 74 (5), 19.Google Scholar
Glowinski, R., Pan, T. W., Hesla, T. I., Joseph, D. D. & Périaux, J. 2001 A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169 (2), 363426.Google Scholar
Goyal, N. & Derksen, J. J. 2012 Direct simulations of spherical particles sedimenting in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 183–184, 113.Google Scholar
Greco, F., D’Avino, G. & Maffettone, P. L. 2007 Rheology of a dilute suspension of rigid spheres in a second order fluid. J. Non-Newtonian Fluid Mech. 147 (1–2), 110.Google Scholar
Hameduddin, I., Gayme, D. F. & Zaki, T. A. 2019 Perturbative expansions of the conformation tensor in viscoelastic flows. J. Fluid Mech. 858, 377406.Google Scholar
Hameduddin, I., Meneveau, C., Zaki, T. A. & Gayme, D. F. 2018 Geometric decomposition of the conformation tensor in viscoelastic turbulence. J. Fluid Mech. 842, 395427.Google Scholar
Hameduddin, I. & Zaki, T. A. 2019 The mean conformation tensor in viscoelastic turbulence. J. Fluid Mech. 865, 363380.Google Scholar
Hetsroni, G. & Rozenblit, R. 1994 Heat transfer to a liquid–solid mixture in a flume. Intl J. Multiphase Flow 20 (4), 671689.Google Scholar
Huang, P. Y., Feng, J., Hu, H. H. & Joseph, D. D. 1997 Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 343, 7394.Google Scholar
Kaftori, D., Hetsroni, G. & Banerjee, S. 1994 Funnel-shaped vortical structures in wall turbulence. Phys. Fluids 6 (9), 30353050.Google Scholar
Karnis, A. & Mason, S. G. 1966 Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol. 10 (2), 571592.Google Scholar
Kemiha, M., Frank, X., Poncin, S. & Li, H. Z. 2006 Origin of the negative wake behind a bubble rising in non-Newtonian fluids. Chem. Engng Sci. 61 (12), 40414047.Google Scholar
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15, 025031.Google Scholar
Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.Google Scholar
Kim, K. & Sureshkumar, R. 2013 Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E 87, 063002.Google Scholar
Lashgari, I., Picano, F., Breugem, W. P. & Brandt, L. 2016 Channel flow of rigid sphere suspensions: particle dynamics in the inertial regime. Intl J. Multiphase Flow 78, 1224.Google Scholar
Lee, J., Jung, S. Y., Sung, H. J. & Zaki, T. A. 2013 Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity. J. Fluid Mech. 726, 196225.Google Scholar
Lee, S. J. & Zaki, T. A. 2017 Simulations of natural transition in viscoelastic channel flow. J. Fluid Mech. 820, 232262.Google Scholar
Li, G., McKinley, G. H. & Ardekani, A. M. 2015 Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785, 486505.Google Scholar
Li, G. J., Karimi, A. & Ardekani, A. M. 2014 Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid. Rheol. Acta 53 (12), 911926.Google Scholar
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M. 2014 Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5, 4120.Google Scholar
Loisel, V., Abbas, M., Masbernat, O. & Climent, E. 2013 The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime. Phys. Fluids 25 (12), 123304.Google Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2011 Is Stokes number an appropriate indicator for turbulence modulation by particles of Taylor-length-scale size? Phys. Fluids 23 (2), 025101.Google Scholar
Lumley, J. L. 1969 Drag reduction by additives. Annu. Rev. Fluid Mech. 1 (1), 367384.Google Scholar
Marchioli, C. & Soldati, A. 2002 Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech. 468, 283315.Google Scholar
Matas, J. P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.Google Scholar
Morris, J. F. 2009 A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol. Acta 48 (8), 909923.Google Scholar
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12, 033040.Google Scholar
Nicolaou, L., Jung, S. Y. & Zaki, T. A. 2015 A robust direct-forcing immersed boundary method with enhanced stability for moving body problems in curvilinear coordinates. Comput. Fluids 119, 101114.Google Scholar
Nowbahar, A., Sardina, G., Picano, F. & Brandt, L. 2013 Turbophoresis attenuation in a turbulent channel flow with polymer additives. J. Fluid Mech. 732, 706719.Google Scholar
Page, J. & Zaki, T. A. 2014 Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742, 520521.Google Scholar
Page, J. & Zaki, T. A. 2015 The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech. 777, 327363.Google Scholar
Pan, Y. & Banerjee, S. 1996 Numerical simulation of particle interactions with wall turbulence. Phys. Fluids 8 (10), 27332755.Google Scholar
Pan, Y. & Banerjee, S. 1997 Numerical investigation of the effects of large particles on wall-turbulence. Phys. Fluids 9 (12), 37863807.Google Scholar
Picano, F., Breugem, W. P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.Google Scholar
Pope, S. B. 2000 Turbulent Flows, vol. 12. Cambridge University Press.Google Scholar
Reade, W. C. & Collins, L. R. 2000 Effect of preferential concentration on turbulent collision rates. Phys. Fluids 12 (10), 25302540.Google Scholar
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94 (1), 102137.Google Scholar
Scirocco, R., Vermant, J. & Mewis, J. 2005 Shear thickening in filled Boger fluids. J. Rheol. 49 (2), 551567.Google Scholar
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189 (4760), 209210.Google Scholar
Shao, X., Wu, T. & Yu, Z. 2012 Fully resolved numerical simulation of particle-laden turbulent flow in a horizontal channel at a low Reynolds number. J. Fluid Mech. 693, 319344.Google Scholar
Shaw, R. 2003 Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35, 183227.Google Scholar
Silberman, E. 1983 The effect of drag-reducing additives on fluid flows and their industrial applications part 1: basic aspects. J. Hydraul Res. 21 (1), 7273.Google Scholar
Snijkers, F., D’Avino, G., Maffettone, P. L., Greco, F., Hulsen, M. A. & Vermant, J. 2011 Effect of viscoelasticity on the rotation of a sphere in shear flow. J. Non-Newtonian Fluid Mech. 166 (7–8), 363372.Google Scholar
Tamano, S., Graham, M. D. & Morinishi, Y. 2011 Streamwise variation of turbulent dynamics in boundary layer flow of drag-reducing fluid. J. Fluid Mech. 686 (10), 352377.Google Scholar
Toms, B. A. 1948 Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, pp. 135141. North-Holland.Google Scholar
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.Google Scholar
Uhlmann, M. & Doychev, T. 2014 Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752 (2), 310348.Google Scholar
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140 (1-3), 322.Google Scholar
Virk, P. S., Mickley, H. S. & Smith, K. A. 1970 The ultimate asymptote and mean flow structure in Toms’ phenomenon. Trans. ASME J. Appl. Mech. 2 (37), 488493.Google Scholar
Wang, G., Abbas, M. & Climent, E. 2018 Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech. 852, 257282.Google Scholar
Wang, S. N., Shekar, A. & Graham, M. D. 2017 Spatiotemporal dynamics of viscoelastic turbulence in transitional channel flow. J. Non-Newtonian Fluid Mech. 244, 104122.Google Scholar
White, C. M., Dubief, Y. & Klewicki, J. 2018 Properties of the mean momentum balance in polymer drag-reduced channel flow. J. Fluid Mech. 834, 409433.Google Scholar
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40 (1), 235256.Google Scholar
Xi, L. & Graham, M. D. 2010 Active and hibernating turbulence in minimal channel flow of newtonian and polymeric fluids. Phys. Rev. Lett. 104, 218301.Google Scholar
Xi, L. & Graham, M. D. 2012 Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech. 693, 433472.Google Scholar
Yeo, K. & Maxey, M. R. 2011 Numerical simulations of concentrated suspensions of monodisperse particles in a Poiseuille flow. J. Fluid Mech. 682, 491518.Google Scholar
Yu, Z., Lin, Z., Shao, X. & Wang, L. P. 2017 Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles. Phys. Rev. E 96 (3), 115.Google Scholar
Zade, S., Lundell, F. & Brandt, L. 2019 Turbulence modulation by finite-size spherical particles in Newtonian and viscoelastic fluids. Intl J. Multiphase Flow 112, 116129.Google Scholar
Zenit, R. & Feng, J. J. 2018 Hydrodynamic interactions among bubbles, drops, and particles in non-Newtonian liquids. Annu. Rev. Fluid Mech. 50 (1), 505534.Google Scholar
Zhang, Q. & Prosperetti, A. 2010 Physics-based analysis of the hydrodynamic stress in a fluid-particle system. Phys. Fluids 22 (3), 617.Google Scholar