Hostname: page-component-5f745c7db-nzk4m Total loading time: 0 Render date: 2025-01-06T23:14:16.277Z Has data issue: true hasContentIssue false

Diffusion coefficients of elastic macromolecules

Published online by Cambridge University Press:  13 September 2019

Bogdan Cichocki
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Marcin Rubin
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
Anna Niedzwiecka
Affiliation:
Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, PL-02668 Warsaw, Poland
Piotr Szymczak*
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
*
Email address for correspondence: [email protected]

Abstract

In elastic macromolecules, the value of the short-time diffusion coefficient depends on the choice of the point the displacement of which is tracked. On the other hand, the experimentally more relevant long-time diffusion coefficient is independent of the reference point, but its estimation usually requires computationally expensive Brownian dynamics simulations. Here we show how to obtain a precise estimate of the long-time diffusion coefficient of elastic macromolecules in a fast and robust manner, without invoking Brownian dynamics.

JFM classification

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akcasu, A. Z. 1982 Comments on the diffusion coefficient and first cumulant. Macromolecules 15 (5), 13211324.Google Scholar
Allison, S. A. 1999 Low Reynolds number transport properties of axisymmetric particles employing stick and slip boundary conditions. Macromolecules 32 (16), 53045312.Google Scholar
Aragon, S. 2004 A precise boundary element method for macromolecular transport properties. J. Comput. Chem. 25 (9), 11911205.Google Scholar
Berlow, R. B., Dyson, H. J. & Wright, P. E. 2018 Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J. Molecular Biol. 430 (16), 23092320.Google Scholar
Binder, K. 1995 Monte Carlo and Molecular Dynamics Simulations in Polymer Science. Oxford University Press.Google Scholar
Bird, R., Hassager, O., Armstrong, R. & Curtiss, C. 1987 Kinetic theory. In Dynamics of Polymeric Liquids, vol. 2. John Wiley.Google Scholar
Bloomfield, V., Dalton, W. & Van Holde, K. 1967 Frictional coefficients of multisubunit structures. I. Theory. Biopolymers 5 (2), 135148.Google Scholar
Byron, O. 2008 Hydrodynamic modeling: the solution conformation of macromolecules and their complexes. Method. Cell Biol. 84, 327373.Google Scholar
Cichocki, B., Ekiel-Jezewska, M. & Wajnryb, E. 2012 Intrinsic viscosity for Brownian particles of arbitrary shape. J. Phys.: Conf. Ser. 392, 012004.Google Scholar
Cichocki, B., Ekiel-Jeżewska, M. L. & Wajnryb, E. 2015 Brownian motion of a particle with arbitrary shape. J. Chem. Phys. 142 (21), 214902.Google Scholar
Cichocki, B., Felderhof, B. U., Hinsen, K., Wajnryb, E. & Bławzdziewicz, J. 1994 Friction and mobility of many spheres in Stokes flow. J. Chem. Phys. 100, 37803790.Google Scholar
Cichocki, B. & Hinsen, K. 1992 Dynamic computer simulation of concentrated hard sphere suspensions. II. Re-analysis of mean square displacement data. Physica A 187 (1–2), 133144.Google Scholar
Doi, M. & Edwards, S. F. 1988 The Theory of Polymer Dynamics, vol. 73. Oxford University Press.Google Scholar
Dosztányi, Z., Mészáros, B. & Simon, I. 2009 Bioinformatical approaches to characterize intrinsically disordered/unstructured proteins. Brief. Bioinform. 11 (2), 225243.Google Scholar
Dubois-Violette, E. & De Gennes, P.-G. 1967 Quasi-elastic scattering by dilute, ideal, polymer solutions. II. Effects of hydrodynamic interactions. Physics 3 (4), 181198.Google Scholar
Dyson, H. J. & Wright, P. E. 2005 Intrinsically unstructured proteins and their functions. Nat. Rev. Mol. Cell Biol. 6 (3), 197208.Google Scholar
Ermak, D. L. & McCammon, J. A. 1978 Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69, 13521360.Google Scholar
Felderhof, B. U. 1988 Many-body hydrodynamic interactions in suspensions. Physica A 151, 116.Google Scholar
Fixman, M. 1981 Inclusion of hydrodynamic interaction in polymer dynamical simulations. Macromolecules 14 (6), 17101717.Google Scholar
Fixman, M. 1983 Variational bounds for polymer transport coefficients. J. Chem. Phys. 78 (3), 15881593.Google Scholar
Galea, C. A., Wang, Y., Sivakolundu, S. G. & Kriwacki, R. W. 2008 Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47 (29), 75987609.Google Scholar
Happel, J. & Brenner, H. 1973 Low Reynolds Number Hydrodynamics. Noordhoff.Google Scholar
Harvey, S. C., Mellado, P. & García de la Torre, J. 1983 Hydrodynamic resistance and diffusion coefficients of segmentally flexible macromolecules with two subunits. J. Chem. Phys. 78 (4), 20812090.Google Scholar
Iakoucheva, L. M., Brown, C. J., Lawson, J. D., Obradović, Z. & Dunker, A. K. 2002 Intrinsic disorder in cell-signaling and cancer-associated proteins. J. Molecular Biol. 323 (3), 573584.Google Scholar
Ishima, R., Freedberg, D. I., Wang, Y.-X., Louis, J. M. & Torchia, D. A. 1999 Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease, and their implications for function. Structure 7 (9), 10471055.Google Scholar
Jacobs, D. J., Kuhn, L. A. & Thorpe, M. F. 2002 Flexible and rigid regions in proteins. In Rigidity Theory and Applications, pp. 357384. Springer.Google Scholar
Juba, D., Audus, D. J., Mascagni, M., Douglas, J. F. & Keyrouz, W. 2017 Zeno: software for calculating hydrodynamic, electrical, and shape properties of polymer and particle suspensions. J. Res. Natl Inst. Stand. Technol. 122, 20.Google Scholar
Kang, E.-H., Mansfield, M. L. & Douglas, J. F. 2004 Numerical path integration technique for the calculation of transport properties of proteins. Phys. Rev. E 69 (3), 031918.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kirkwood, J. G. & Riseman, J. 1948 The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. Chem. Phys. 16, 565573.Google Scholar
de La Torre, J. G., Jimenez, A. & Freire, J. J. 1982 Monte Carlo calculation of hydrodynamic properties of freely jointed, freely rotating, and real polymethylene chains. Macromolecules 15 (1), 148154.Google Scholar
Liu, B. & Dünweg, B. 2003 Translational diffusion of polymer chains with excluded volume and hydrodynamic interactions by Brownian dynamics simulation. J. Chem. Phys. 118 (17), 80618072.Google Scholar
Makowski, L., Rodi, D. J., Mandava, S., Minh, D. D., Gore, D. B. & Fischetti, R. F. 2008 Molecular crowding inhibits intramolecular breathing motions in proteins. J. Molecular Biol. 375 (2), 529546.Google Scholar
Mansfield, M. L. & Douglas, J. F. 2008 Improved path integration method for estimating the intrinsic viscosity of arbitrarily shaped particles. Phys. Rev. E 78 (4), 046712.Google Scholar
Mazur, P. & van Saarloos, W. 1982 Many-sphere hydrodynamic interactions and mobilities in a suspension. Physica A 115, 2157.Google Scholar
Oldfield, C. J. & Dunker, A. K. 2014 Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 83, 553584.Google Scholar
Oldfield, C. J., Meng, J., Yang, J. Y., Yang, M. Q., Uversky, V. N. & Dunker, A. K. 2008 Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9 (1), S1.Google Scholar
Öttinger, H. C. 1987 Translational diffusivity from the Zimm model. J. Chem. Phys. 87 (5), 31563165.Google Scholar
Öttinger, H. C. 1996 Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms. Springer.Google Scholar
Prakash, J. R. 1999 The kinetic theory of dilute solutions of flexible polymers: hydrodynamic interaction. In Rheology Series, vol. 8, pp. 467517. Elsevier.Google Scholar
Rotne, J. & Prager, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50, 48314837.Google Scholar
Schmidt, R. R., Cifre, J. H. & de la Torre, J. G. 2012 Translational diffusion coefficients of macromolecules. Eur. Phys. J. E 35 (12), 130.Google Scholar
Thorpe, M. F., Chubynsky, M., Hespenheide, B., Menor, S., Jacobs, D. J., Kuhn, L. A., Zavodszky, M. I., Lei, M., Rader, A. & Whiteley, W. 2005 Flexibility in biomolecules. In Current Topics In Physics: In Honor of Sir Roger J. Elliott, pp. 97112. World Scientific.Google Scholar
de la Torre, J. G. 2016 The HYDRO software suite for the prediction of solution properties of rigid and flexible macromolecules and nanoparticles. In Analytical Ultracentrifugation. Instrumentation, Software, and Applications, pp. 195217. Springer.Google Scholar
de la Torre, J. G. & Bloomfield, V. A. 1978 Hydrodynamic properties of macromolecular complexes. IV. Intrinsic viscosity theory, with applications to once-broken rods and multisubunit proteins. Biopolymers 17, 16051627.Google Scholar
Uversky, V. N., Oldfield, C. J. & Dunker, A. K. 2008 Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37, 215246.Google Scholar
Van Kampen, N. G. 1992 Stochastic Processes in Physics and Chemistry. Elsevier.Google Scholar
Wegener, W. A. 1982 Bead models of segmentally flexible macromolecules. J. Chem. Phys. 76 (12), 64256430.Google Scholar
Wegener, W. A. 1985 Center of diffusion of flexible macromolecules. Macromolecules 18 (12), 25222530.Google Scholar
Wright, P. E. & Dyson, H. J. 1999 Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J. Molecular Biol. 293 (2), 321331.Google Scholar
Yamakawa, H. 1970 Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J. Chem. Phys. 53, 436443.Google Scholar
Yamakawa, H. 1971 Modern Theory of Polymer Solutions. Harper & Row.Google Scholar
Zimm, B. H. 1956 Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24 (2), 269278.Google Scholar
Zimm, B. H. 1980 Chain molecule hydrodynamics by the Monte-Carlo method and the validity of the Kirkwood–Riseman approximation. Macromolecules 13 (3), 592602.Google Scholar
Zimm, B. H. 1982 Sedimentation of asymmetric elastic dumbbells and the rigid-body approximation in the hydrodynamics of chains. Macromolecules 15 (2), 520525.Google Scholar
Zuk, P. J., Cichocki, B. & Szymczak, P. 2018 GRPY: an accurate bead method for calculation of hydrodynamic properties of rigid biomacromolecules. Biophys. J. 115 (5), 782800.Google Scholar
Zuk, P. J., Wajnryb, E., Mizerski, K. A. & Szymczak, P. 2014 Rotne–Prager–Yamakawa approximation for different-sized particles in application to macromolecular bead models. J. Fluid Mech. 741, R5.Google Scholar