Published online by Cambridge University Press: 29 March 2006
This paper presents a numerical method for solving linearized water-wave problems with oscillatory time dependence. Specifically it considers the diffraction problem for oblique plane waves incident upon an infinitely long fixed cylinder on the free surface. The numerical method is based on a variational principle equivalent to the linearized boundary-value problem. Finite-element techniques are used to represent the velocity potential; and the variational principle is used to determine the unknown coefficients in the solution throughout the fluid domain. To illustrate this method, reflexion and transmission coefficients and the diffraction forces and moment are computed for oblique waves incident upon a vertical flat plate, a horizontal flat plate and rectangular cylinders, where the comparison is made with the existing results by others. Also considered is the associated sinuous forced-motion problem, where comparison is made with the results for a circular cylinder obtained by Bolton & Ursell (1973).
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.