Published online by Cambridge University Press: 02 February 2015
We present a depth-integrated equation for the mechanics of generation, propagation and dissipation of low-frequency hydro-acoustic waves due to sudden bottom displacement in a weakly compressible ocean overlying a weakly compressible viscous sediment layer. The model is validated against a full 3D computational model. Physical properties of these waves are studied and compared with those for waves over a rigid sea bed, revealing changes in the frequency spectrum and modal peaks. The resulting model equation can be used for numerical prediction in large-scale domains, overcoming the computational difficulties of 3D models while taking into account the role of bottom dissipation on hydro-acoustic wave generation and propagation.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.