Article contents
The deepening of a mixed layer in a stratified fluid
Published online by Cambridge University Press: 29 March 2006
Abstract
In this paper two aspects of the deepening of a mixed layer in a stratified fluid are examined in the laboratory. The first is the deepening of a layer into a region of constant density gradient. Turbulence is produced by an oscillating grid which generates a horizontally homogeneous field of motion with no significant mean flow. It is found that the rate at which the potential energy of the basic stratification is increased by the mixing does not bear a simple relationship to the rate of energy input by the grid. On the other hand, when allowance is made for the decay of turbulent energy away from the grid and only that portion to reach the bottom of the mixed layer is considered, the rate of potential energy increase is found to be proportional to this available energy. The second aspect to be discussed is the effect of energy radiation by internal waves in the region below the mixed layer. Estimates are made of the possible loss of energy to these waves, which reduces the amount available to deepen the layer. An experimental demonstration of up to 50 % reduction in the mixing rate due to the presence of internal waves is given. Finally, the implications of these results are discussed in the light of current theoretical models of the deepening process.
- Type
- Research Article
- Information
- Copyright
- © 1975 Cambridge University Press
References
- 105
- Cited by