Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-19T12:11:51.036Z Has data issue: false hasContentIssue false

The decay of perturbations in a radiating gas

Published online by Cambridge University Press:  29 March 2006

D. B. Olfe
Affiliation:
Department of the Aerospace and Mechanical Engineering Sciences, University of California, San Diego
E. P. DePlomb
Affiliation:
Department of the Aerospace and Mechanical Engineering Sciences, University of California, San Diego

Abstract

The decay of perturbations in a radiating gas is analyzed by first carrying out complete solutions for the decay of initial sinusoidal perturbations in the temperature, gas velocity, and pressure. These sinusoidal perturbations are superposed to yield solutions for the decay of initial ‘step’ temperature profiles consisting of constant initial temperature perturbations inside finite planar, cylindrical and spherical regions, with zero initial temperature perturbations outside. In contrast to the sinusoidal case, which may be described by a single radiation parameter, the decay of the step profile is determined by both the optical depth of the initial profile and the Boltzmann number, which is inversely proportional to the blackbody radiative flux. As the limits of zero and infinite Boltzmann numbers are approached, constant-density and constant-pressure cooling expressions are recovered. For a broad range of intermediate and small Boltzmann numbers the cooling proceeds in time from a constant-density process to a constant-pressure process. This transition is produced by gasdynamic waves generated near the profile edges by the radiative cooling. The temperature near the profile centre may increase during the transition period.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baldwin, B. S. 1962 NASA TR R-138.
Bathla, P. S. & Viskanta, R. 1968 Appl. Sci. Res. 19, 182.
Calvert, J. B., Coffman, J. W. & Querfeld, C. W. 1966 J. Acoust. Soc. Am. 39, 532.
Carslaw, H. S. & Jaeger, J. C. 1959 Conduction of Heat in Solids, 2nd edition, pp. 535. Oxford University Press.
Cogley, A. C. 1968 Ph.D. Thesis, Stanford University.
Gille, J. C. 1968 J. Atmos. Sci, 25, 808.
Golitsyn, G. S. 1963 Bull. Acad. Sci. USSR, Geophys. Ser. (English Trans.), 589.
Goody, R. M. 1964 Atmospheric Radiation, Part I, pp. 344350. Oxford University Press.
Goody, R. M. & Belton, M. J. S. 1967 Planet. Space Sci. 15, 247.
Lick, W. 1964 J. Fluid Mech. 18, 274.
Moore, F. K. 1966 Phys. Fluids, 9, 70.
Pai, S. I. 1963 Phys. Fluids 6, 1440.
Prokof'ev, V. A. 1957 Prikl. Mat. i Mekh. 21, 775.
Prokof'ev. V. A. 1961 ARS Journal (English Trans.) 31, 988.
Riazantsev, I. S. 1959 J. Appl. Math. Mech. (USSR, English Trans.) 23, 1126.
Sasamori, J. & London, J. 1966 J. Atmos. Sci. 23, 543.
Sforza, P. M. & Porter, L. D. 1968 AIAA J. 6, 2267.
Smith, P. W. 1957 J. Acoust. Soc. Am. 29, 693.
Solan, A. & Cohen, I. M. 1966 Phys. Fluids, 9, 2365.
Spiegel, E. A. 1957 Astrophys. J. 126, 202.
Stein, R. F. & Spiegel, E. A. 1967 J. Acoust. Soc. Am. 42, 866.
Stokes, G. G. 1851 Phil. Mag. 1, 305.
Vetlutskii, V. N. & Onufriev, A. T. 1962 Zh. Prikl. Mekhan. i Tekhn. Fiz. (PMFT), no. 6, 29.
Vincenti, W. G. & Baldwin, B. S. 1962 J. Fluid Mech. 12, 449.
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gas Dynamics, pp. 485505. New York:John Wiley.
Zel'dovich, Y. B. & Rarzer, Y. P. 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, vol. 2 (English Trans.), pp. 62651. New York: Academic.