Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-01T22:43:01.909Z Has data issue: false hasContentIssue false

Decay of magnetohydrodynamic turbulence at low magnetic Reynolds number

Published online by Cambridge University Press:  08 July 2010

P. BURATTINI*
Affiliation:
Physique Statistique et des Plasmas, Université Libre de Bruxelles, B-1050 Brussels, Belgium
O. ZIKANOV
Affiliation:
Department of Mechanical Engineering, University of Michigan, Dearborn, MI 48128-1491, USA
B. KNAEPEN
Affiliation:
Physique Statistique et des Plasmas, Université Libre de Bruxelles, B-1050 Brussels, Belgium
*
Email address for correspondence: [email protected]

Abstract

We report a detailed numerical investigation of homogeneous decaying turbulence in an electrically conducting fluid in the presence of a uniform constant magnetic field. The asymptotic limit of low magnetic Reynolds number is assumed. Large-eddy simulations with the dynamic Smagorinsky model are performed in a computational box sufficiently large to minimize the effect of periodic boundary conditions. The initial microscale Reynolds number is about 170 and the magnetic interaction parameter N varies between 0 and 50. We find that except for a short period of time when N = 50, the flow evolution is strongly influenced by nonlinearity and cannot be adequately described by any of the existing theoretical models. One particularly noteworthy result is the near equipartition between the rates of Joule and viscous dissipations of the kinetic energy observed at all values of N during the late stages of the decay. Further, the velocity components parallel and perpendicular to the magnetic field decay at different rates, whose value depends on the strength of the magnetic field and the stage of the decay. This leads to a complex evolution of the Reynolds stress anisotropy ellipsoid, which goes from being rod-shaped, through spherical to disc-shaped. We also discuss the possibility of the power-law decay, the comparison between computed, experimental and theoretical decay exponents, the anisotropy of small-scale fluctuations, and the evolution of the spectral energy distributions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alemany, A., Moreau, R., Sulem, P. L. & Frisch, U. 1979 Influence of an external magnetic field on homogeneous MHD turbulence. J. de Méc. 18, 277313.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Burattini, P., Kinet, M., Carati, D. & Knaepen, B. 2008 a Anisotropy of velocity spectra in quasistatic magnetohydrodynamic turbulence. Phys. Fluids 20 (6), 065110-1–065110-5.Google Scholar
Burattini, P., Kinet, M., Carati, D. & Knaepen, B. 2008 b Spectral energetics of quasi-static MHD turbulence. Physica D 237 (14–17), 20622066.CrossRefGoogle Scholar
Burattini, P., Lavoie, P. & Antonia, R. A. 2005 On the normalized turbulent energy dissipation rate. Phys. Fluids 17, 098103.Google Scholar
Burattini, P., Lavoie, P. & Antonia, R. A. 2008 c Velocity derivative skewness in isotropic turbulence and its measurement with hot wires. Exp. Fluids 45 (3), 523535.Google Scholar
Choi, K.-S. & Lumley, J. L. 2001 The return to isotropy of homogeneous turbulence. J. Fluid Mech. 436, 5984.Google Scholar
Comte-Bellot, G. & Corrsin, S. 1971 Simple Eulerian time correlation of full- and narrow-band velocity signals in grid-generated, ‘isotropic’ turbulence. J. Fluid Mech. 48, 273337.CrossRefGoogle Scholar
Davidson, P. A. 1995 Magnetic damping of jets and vortices. J. Fluid Mech. 299, 153186.CrossRefGoogle Scholar
Davidson, P. A. 1997 The role of angular momentum in the magnetic damping of turbulence. J. Fluid Mech. 336, 123150.Google Scholar
Davidson, P. A. 2001 An Introduction to Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Dymkou, V. & Pothérat, A. 2008 Spectral methods for low-Rm MHD turbulence. In Proceedings of the 7th International PAMIR Conference. Fundamental and Applied MHD (ed. Chopart, J.-P.), vol. 2, pp. 393397. Université de Reims Champagne-Ardenne.Google Scholar
Eckert, S., Gerbeth, G., Witke, W. & Langenbrunner, H. 2001 MHD turbulence measurements in a sodium channel flow exposed to a transverse magnetic field. Intl J. Heat Fluid Flow 22, 358364.Google Scholar
George, W. K. & Hussein, H. J. 1991 Locally axisymmetric turbulence. J. Fluid Mech. 233, 123.CrossRefGoogle Scholar
George, W. K., Wang, H., Wollblad, C. & Johansson, T. 2001 Homogeneous turbulence and its relation to realizable flows. In 14th Australasian Fluid Mechanics Conference (ed. Dally, B. B.), pp. 4148. Adelaide University.Google Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3, 17601765.CrossRefGoogle Scholar
Ishida, T., Davidson, P. & Kaneda, Y. 2006 On the decay of isotropic turbulence. J. Fluid Mech. 564, 455475.Google Scholar
Ishida, T. & Kaneda, Y. 2007 Small-scale anisotropy in magnetohydrodynamic turbulence under a strong uniform magnetic field. Phys. Fluids 19, 075104-1–075104-10.CrossRefGoogle Scholar
Kinet, M., Burattini, P., Carati, D. & Knaepen, B. 2008 Decay of passive scalar fluctuations in homogeneous magnetohydrodynamic turbulence. Phys. Fluids 20, 075105-1–075105-12.CrossRefGoogle Scholar
Knaepen, B., Kassinos, S. & Carati, D. 2004 Magnetohydrodynamic turbulence at moderate magnetic Reynolds number. J. Fluid Mech. 513, 199220.CrossRefGoogle Scholar
Knaepen, B. & Moin, P. 2004 Large-eddy simulation of conductive flows at low magnetic Reynolds number. Phys. Fluids 16, 12551261.CrossRefGoogle Scholar
Kolesnikov, Y. & Tsinober, A. 1972 An experimental study of two-dimensional turbulence behind a grid. Fluid Dyn. 9, 621624.CrossRefGoogle Scholar
Lehnert, B. 1955 The decay of magneto-turbulence in the presence of a magnetic field and Coriolis force. Q. Appl. Math. 12, 321341.CrossRefGoogle Scholar
Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids 4 (3), 633635.Google Scholar
Mathieu, J. & Scott, J. 2000 An Introduction to Turbulent Flow. Cambridge University Press.Google Scholar
Matthaeus, W. H., Ghosh, S., Oughton, S. & Roberts, D. A. 1996 Anisotropic three-dimensional MHD turbulence. J. Geophys. Res. 101, 76197630.Google Scholar
Mininni, P. 2007 Inverse cascades and α effect at a low magnetic Prandtl number. Phys. Rev. E 76 (2), 026316.Google Scholar
Moffatt, H. K. 1967 On the suppression of turbulence by a uniform magnetic field. J. Fluid Mech. 28, 571592.CrossRefGoogle Scholar
Moreau, R. 1990 Magnetohydrodynamics. Kluwer Academic.CrossRefGoogle Scholar
Moreau, R., Thess, A. & Tsinober, A. 2007 MHD turbulence at low magnetic Reynolds number: present understanding and future needs. In Magnetohydrodynamics – Historical Evolution and Trends (ed. Molokov, S., Moreau, R. & Moffatt, H. K.), vol. 80, pp. 231246. Springer.Google Scholar
Müller, U. & Bühler, L. 2001 Magnetofluiddynamics in Channels and Containers. Springer.CrossRefGoogle Scholar
Oughton, S., Priest, E. R. & Matthaeus, W. H. 1994 The influence of a mean magnetic field on three-dimensional MHD turbulence. J. Fluid Mech. 280, 95117.CrossRefGoogle Scholar
Ponty, Y., Mininni, P., Montgomery, D., Pinton, J.-F., Politano, H. & Pouquet, A. 2005 Numerical study of dynamo action at low magnetic Prandtl numbers. Phys. Rev. Lett. 94 (16), 164502.CrossRefGoogle ScholarPubMed
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Pothérat, A. & Alboussière, T. 2003 Small scales and anisotropy in low Rm magnetohydrodynamic turbulence. Phys. Fluids 15, 31703180.CrossRefGoogle Scholar
Roberts, P. H. 1967 An Introduction to Magnetohydrodynamics. Elsevier.Google Scholar
Schumann, U. 1976 Numerical simulation of the transition from three- to two-dimensional turbulence under a uniform magnetic field. J. Fluid Mech. 74, 3158.Google Scholar
Shebalin, J., Matthaeus, W. H. & Montgomery, D. 1983 Anisotropy in MHD turbulence due to a mean magnetic field. J. Plasma Phys. 29, 525547.CrossRefGoogle Scholar
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.Google Scholar
Vorobev, A. & Zikanov, O. 2008 Smagorinsky constant in LES modeling of anisotropic MHD turbulence. Theor. Comp. Fluid Dyn. 22, 317325.Google Scholar
Vorobev, A., Zikanov, O., Davidson, P. A. & Knaepen, B. 2005 Anisotropy of magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Fluids 17, 125105-1–125105-12.CrossRefGoogle Scholar
Wang, H. & George, W. K. 2002 The integral scale in homogeneous isotropic turbulence. J. Fluid Mech. 459, 429443.CrossRefGoogle Scholar
Williamson, J. H. 1980 Low-storage Runge–Kutta schemes. J. Comput. Phys. 35, 4856.Google Scholar
Yu, H., Girimaji, S. S. & Luo, L.-S. 2005 Lattice Boltzmann simulations of decaying homogeneous isotropic turbulence. Phys. Rev. E 71, 016708.Google Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar