Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T23:23:11.883Z Has data issue: false hasContentIssue false

The decay of isotropic turbulence carrying non-spherical finite-size particles

Published online by Cambridge University Press:  22 July 2019

Lennart Schneiders*
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany JARA–HPC, Forschungszentrum Jülich, Jülich 52425, Germany
Konstantin Fröhlich
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany
Matthias Meinke
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany JARA–HPC, Forschungszentrum Jülich, Jülich 52425, Germany
Wolfgang Schröder
Affiliation:
Institute of Aerodynamics, RWTH Aachen University, 52062 Aachen, Germany JARA–HPC, Forschungszentrum Jülich, Jülich 52425, Germany
*
Email address for correspondence: [email protected]

Abstract

Direct particle–fluid simulations of heavy spheres and ellipsoids interacting with decaying isotropic turbulence are conducted. This is the rigorous extension of the spherical particle analysis in Schneiders et al. (J. Fluid Mech., vol. 819, 2017, pp. 188–227) to $O(10^{4})$ non-spherical particles. To the best of the authors’ knowledge, this represents the first particle-resolved study on turbulence modulation by non-spherical particles of near-Kolmogorov-scale size. The modulation of the turbulent flow is precisely captured by explicitly resolving the stresses acting on the fluid–particle interfaces. The decay rates of the fluid and particle kinetic energy are found to increase with the particle aspect ratio. This is due to the particle-induced dissipation rate and the direct transfer of kinetic energy, both of which can be substantially larger than for spherical particles depending on the particle orientation. The extra dissipation rate resulting from the translational and rotational particle motion is quantified to detail the impact of the particles on the fluid kinetic energy budget and the influence of the particle shape. It is demonstrated that the previously derived analytical model for the particle-induced dissipation rate of smaller particles is valid for the present cases albeit these involve significant finite-size effects. This generic expression allows us to assess the impact of individual inertial particles on the local energy balance independent of the particle shape and to quantify the share of the rotational particle motion in the kinetic energy budget. To enable the examination of this mechanistic model in particle-resolved simulations, a method is proposed to reconstruct the so-called undisturbed fluid velocity and fluid rotation rate close to a particle. The accuracy and robustness of the scheme are corroborated via a parameter study. The subsequent discussion emphasizes the necessity to account for the orientation-dependent drag and torque in Lagrangian point-particle models, including corrections for finite particle Reynolds numbers, to reproduce the local and global energy balance of the multiphase system.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, H. I. & Jiang, F. 2019 Forces and torques on a prolate spheroid: low-Reynolds-number and attack angle effects. Acta Mech. 230, 431447.10.1007/s00707-018-2325-xGoogle Scholar
Andersson, H. I., Zhao, L. & Barri, M. 2012 Torque-coupling and particle-turbulence interactions. J. Fluid Mech. 696, 319329.10.1017/jfm.2012.44Google Scholar
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23, 695700.10.1063/1.863055Google Scholar
Ardekani, M. N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.10.1017/jfm.2018.854Google Scholar
Ardekani, M. N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.10.1017/jfm.2017.68Google Scholar
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 34963513.10.1063/1.1616031Google Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243Google Scholar
Balachandar, S., Liu, K. & Lakhote, M. 2019 Self-induced velocity correction for improved drag estimation in Euler-Lagrange point-particle simulations. J. Comput. Phys. 376, 160185.10.1016/j.jcp.2018.09.033Google Scholar
Bellani, G., Byron, M. L., Collignon, A. G., Meyer, C. R. & Variano, E. A. 2012 Shape effects on turbulent modulation by large nearly neutrally buoyant particles. J. Fluid Mech. 712, 4160.10.1017/jfm.2012.393Google Scholar
Bellani, G. & Variano, E. A. 2012 Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14, 125009.10.1088/1367-2630/14/12/125009Google Scholar
Bordoloi, A. D. & Variano, E. 2017 Rotational kinematics of large cylindrical particles in turbulence. J. Fluid Mech. 815, 199222.10.1017/jfm.2017.38Google Scholar
Burton, T. M. & Eaton, J. K. 2005 Fully resolved simulations of particle-turbulence interaction. J. Fluid Mech. 545, 67111.10.1017/S0022112005006889Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic Press.Google Scholar
Do-Quang, M., Amberg, G., Brethouwer, G. & Johansson, A. V. 2014 Simulation of finite-size fibers in turbulent channel flows. Phys. Rev. E 89, 013006.Google Scholar
Eshghinejadfard, A., Hosseini, S. A. & Thévenin, D. 2017 Fully-resolved prolate spheroids in turbulent channel flows: A lattice Boltzmann study. AIP Adv. 7, 095007.10.1063/1.5002528Google Scholar
Fornari, W., Picano, F. & Brandt, L. 2016 Sedimentation of finite-size spheres in quiescent and turbulent environments. J. Fluid Mech. 788, 640669.10.1017/jfm.2015.698Google Scholar
Fröhlich, K., Schneiders, L., Meinke, M. & Schröder, W. 2018 Validation of Lagrangian two-way coupled point-particle models in large-eddy simulations. Flow Turbul. Combust. 101, 317341.10.1007/s10494-018-9933-3Google Scholar
Geiss, S., Dreizler, A., Stojanovic, Z., Chrigui, M., Sadiki, A. & Janicka, J. 2004 Influence of swirl on the initial merging zone of a turbulent annular jet. Exp. Fluids 36, 344354.10.1007/s00348-003-0729-3Google Scholar
Kidanemariam, A. G., Chan-Braun, C., Doychev, T. & Uhlmann, M. 2013 Direct numerical simulation of horizontal open channel flow with finite-size, heavy particles at low solid volume fraction. New J. Phys. 15, 025031.Google Scholar
Lau, T. C. W. & Nathan, G. J. 2014 Influence of Stokes number on the velocity and concentration distributions in particle-laden jets. J. Fluid Mech. 757, 432457.10.1017/jfm.2014.496Google Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.10.1146/annurev.fl.26.010194.001235Google Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.10.1017/S0022112009994022Google Scholar
Marchioli, C. & Soldati, A. 2013 Rotation statistics of fibers in wall shear turbulence. Acta Mech. 224, 23112329.10.1007/s00707-013-0933-zGoogle Scholar
Marchioli, C., Zhao, L. & Andersson, H. I. 2016 On the relative rotational motion between rigid fibers and fluid in turbulent channel flow. Phys. Fluids 28, 013301.10.1063/1.4937757Google Scholar
Mehrabadi, M., Horwitz, J. A. K., Subramaniam, S. & Mani, A. 2018 A direct comparison of particle-resolved and point-particle methods in decaying turbulence. J. Fluid Mech. 850, 336369.10.1017/jfm.2018.442Google Scholar
Morrison, J. F., Vallikivi, M. & Smits, A. J. 2016 The inertial subrange in turbulent pipe flow: centreline. J. Fluid Mech. 788, 602613.10.1017/jfm.2015.707Google Scholar
Ouchene, R., Khalij, M., Arcen, B. & Tanièrea, A. 2016 A new set of correlations of drag, lift and torque coefficients for non-spherical particles and large Reynolds numbers. Powder Technol. 303, 3343.10.1016/j.powtec.2016.07.067Google Scholar
Qi, G., Nathan, G. J. & Lau, T. C. W. 2015 Velocity and orientation distributions of fibrous particles in the near-field of a turbulent jet. Powder Technol. 276, 1017.10.1016/j.powtec.2015.02.003Google Scholar
Sabban, L., Cohen, A. & van Hout, R. 2017 Temporally resolved measurements of heavy, rigid fibre translation and rotation in nearly homogeneous isotropic turbulence. J. Fluid Mech. 814, 4268.10.1017/jfm.2017.12Google Scholar
Sanjeevi, S. K. P., Kuipers, J. A. M. & Padding, J. T. 2018 Drag, lift and torque correlations for non-spherical particles from Stokes limit to high Reynolds numbers. Intl J. Multiphase Flow 106, 325337.10.1016/j.ijmultiphaseflow.2018.05.011Google Scholar
Schiller, L. & Naumann, A. Z. 1933 Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung. Z. Verein. Deutsch. Ing. 77, 318320.Google Scholar
Schneiders, L., Günther, C., Meinke, M. & Schröder, W. 2016 An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 6286.10.1016/j.jcp.2016.01.026Google Scholar
Schneiders, L., Meinke, M. & Schröder, W. 2017a Direct particle-fluid simulation of Kolmogorov-length-scale size particles in decaying isotropic turbulence. J. Fluid Mech. 819, 188227.10.1017/jfm.2017.171Google Scholar
Schneiders, L., Meinke, M. & Schröder, W. 2017b On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence. Fuel 201, 214.10.1016/j.fuel.2016.11.096Google Scholar
Tanaka, T. & Eaton, J. K. 2010 Sub-Kolmogorov resolution particle image velocimetry measurements of particle-laden forced turbulence. J. Fluid Mech. 643, 177206.10.1017/S0022112009992023Google Scholar
Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49, 249276.10.1146/annurev-fluid-010816-060135Google Scholar
Zhao, F., George, W. K. & van Wachem, B. G. M. 2016 Four-way coupled simulations of small particles in turbulent channel flow: The effects of particle shape and Stokes number. Phys. Fluids 27, 083301.Google Scholar