Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T00:08:40.906Z Has data issue: false hasContentIssue false

Current generation by deep-water breaking waves

Published online by Cambridge University Press:  22 August 2016

N. E. Pizzo*
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0213, USA
Luc Deike
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0213, USA
W. Kendall Melville
Affiliation:
Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0213, USA
*
Email address for correspondence: [email protected]

Abstract

We examine the partitioning of the energy transferred to the water column by deep-water wave breaking; in this case between the turbulent and mean flow. It is found that more than 95 % of the energy lost by the wave field is dissipated in the first four wave periods after the breaking event. The remaining energy is in the coherent vortex generated by breaking. A scaling argument shows that the ratio between the energy in this breaking generated mean current and the total energy lost from the wave field to the water column due to breaking scales as $(hk)^{1/2}$, where $hk$ is the local slope at breaking. This model is examined using direct numerical simulations of breaking waves solving the full two-phase air–water Navier–Stokes equations, as well as the limited available laboratory data, and good agreement is found for strong breaking waves.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banner, M. L. & Melville, W. K. 1976 On the separation of air flow over water waves. J. Fluid Mech. 77 (04), 825842.Google Scholar
Banner, M. L. & Peirson, W. L. 2007 Wave breaking onset and strength for two-dimensional deep-water wave groups. J. Fluid Mech. 585, 93115.Google Scholar
Banner, M. L. & Peirson, W. L. 1998 Tangential stress beneath wind-driven air–water interfaces. J. Fluid Mech. 364, 115145.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Belden, J. & Techet, A. H. 2011 Simultaneous quantitative flow measurement using PIV on both sides of the air–water interface for breaking waves. Exp. Fluids 50 (1), 149161.Google Scholar
Bühler, O. 2007 Impulsive fluid forcing and water strider locomotion. J. Fluid Mech. 573, 211236.Google Scholar
Bühler, O. 2014 Waves and Mean Flows. Cambridge University Press.Google Scholar
Cavaleri, L., Fox-Kemper, B. & Hemer, M. 2012 Wind waves in the coupled climate system. Bull. Am. Meteorol. Soc. 93 (11), 16511661.CrossRefGoogle Scholar
Deike, L., Fuster, D., Berhanu, M. & Falcon, E. 2014 Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112, 234501.Google Scholar
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.Google Scholar
Deike, L., Popinet, S. & Melville, W. 2015 Capillary effects on wave breaking. J. Fluid Mech. 769, 541569.Google Scholar
Derakhti, M. & Kirby, J. T. 2014 Bubble entrainment and liquid–bubble interaction under unsteady breaking waves. J. Fluid Mech. 761, 464506.Google Scholar
Derakhti, M. & Kirby, J. T. 2016 Breaking-onset, energy and momentum flux in unsteady focused wave packets. J. Fluid Mech. 790, 553581.Google Scholar
Dhanak, M. R. & Bernardinis, B. 1981 The evolution of an elliptic vortex ring. J. Fluid Mech. 109, 189216.Google Scholar
Donelan, M. A. 1998 Air–water exchange processes. Coast. Estuar. Stud. 1936.Google Scholar
Drazen, D. A. & Melville, W. K. 2009 Turbulence and mixing in unsteady breaking surface waves. J. Fluid Mech. 628, 85119.Google Scholar
Drazen, D. A., Melville, W. K. & Lenain, L. 2008 Inertial scaling of dissipation in unsteady breaking waves. J. Fluid Mech. 611, 307332.Google Scholar
Duncan, J. H. 1981 An experimental investigation of breaking waves produced by a towed hydrofoil. Proc. R. Soc. Lond. A 377 (1770), 331348.Google Scholar
Fuster, D., Agbaglah, G., Josserand, C., Popinet, S. & Zaleski, S. 2009 Numerical simulation of droplets, bubbles and waves: state of the art. Fluid Dyn. Res. 41, 065001.CrossRefGoogle Scholar
Fuster, D., Matas, J.-P., Marty, S., Popinet, S., Hoepffner, J., Cartellier, A. & Zaleski, S. 2013 Instability regimes in the primary breakup region of planar coflowing sheets. J. Fluid Mech. 736, 150176.Google Scholar
Grare, L., Peirson, W. L., Branger, H., Walker, J. W., Giovanangeli, J.-P. & Makin, V. 2013 Growth and dissipation of wind-forced, deep-water waves. J. Fluid Mech. 722, 550.Google Scholar
Iafrati, A. 2011 Energy dissipation mechanisms in wave breaking processes: spilling and highly aerated plunging breaking events. J. Geophys. Res. 116 (C7), doi:10.1029/2011JC007038.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Linden, P. F. & Turner, J. S. 2001 The formation of ‘optimal’ vortex rings, and the efficiency of propulsion devices. J. Fluid Mech. 427, 6172.Google Scholar
Longuet-Higgins, M. S. & Stewart, R. W. 1964 Radiation stresses in water waves; a physical discussion, with applications. In Deep Sea Research and Oceanographic Abstracts, vol. 11, pp. 529562. Elsevier.Google Scholar
Lubin, P. & Glockner, S. 2015 Numerical simulations of three-dimensional breaking waves: aeration and turbulent structures. J. Fluid Mech. 767, 364393.Google Scholar
McIntyre, M. E. 1981 On the wave momentum myth. J. Fluid Mech. 106, 331347.Google Scholar
Mei, C. C. 1989 The Applied Dynamics of Ocean Surface Waves. vol. 1. World Scientific.Google Scholar
Melville, W. K. 1996 The role of surface-wave breaking in air-sea interaction. Annu. Rev. Fluid Mech. 28 (1), 279321.Google Scholar
Melville, W. K. & Fedorov, A. V. 2015 The equilibrium dynamics and statistics of gravity–capillary waves. J. Fluid Mech. 767, 449466.Google Scholar
Melville, W. K., Veron, F. & White, C. J. 2002 The velocity field under breaking waves: coherent structure and turbulence. J. Fluid Mech. 454, 203233.Google Scholar
Peregrine, D. H. 1999 Large-scale vorticity generation by breakers in shallow and deep water. Eur. J. Mech. (B/Fluids) 18 (3), 403408.CrossRefGoogle Scholar
Phillips, O. M. 1977 The Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Phillips, O. M. 1985 Spectral and statistical properties of the equilibrium range in wind-generated gravity waves. J. Fluid Mech. 156, 505531.CrossRefGoogle Scholar
Pizzo, N. E. & Melville, W. K.2016 Wave modulation: the geometry, kinematics and dynamics of surface-wave focusing. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Pizzo, N. E. & Melville, W. K. 2013 Vortex generation by deep-water breaking waves. J. Fluid Mech. 734, 198218.Google Scholar
Popinet, S. 2003 Gerris: a tree-based adaptative solver for the incompressible Euler equations in complex geometries. J. Comput. Phys. 190, 572600.Google Scholar
Popinet, S. 2009 An accurate adaptative solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228, 58385866.Google Scholar
Rapp, R. J. & Melville, W. K. 1990 Laboratory measurements of deep-water breaking waves. Phil. Trans. R. Soc. Lond. A 735800.Google Scholar
Rapp, R. J.1986 Laboratory measurements of deep water breaking waves. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Romero, L., Melville, W. K. & Kleiss, J. M. 2012 Spectral energy dissipation due to surface wave breaking. J. Phys. Oceanogr. 42, 14211441.Google Scholar
Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.Google Scholar
Sullivan, P. P. & McWilliams, J. C. 2009 Dynamics of winds and currents coupled to surface waves. Annu. Rev. Fluid Mech. 42, 1942.Google Scholar
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2004 The oceanic boundary layer driven by wave breaking with stochastic variability. Part 1. Direct numerical simulations. J. Fluid Mech. 507, 143174.Google Scholar
Sullivan, P. P., McWilliams, J. C. & Melville, W. K. 2007 Surface gravity wave effects in the oceanic boundary layer: Large-eddy simulation with vortex force and stochastic breakers. J. Fluid Mech. 593, 405452.Google Scholar
Sutherland, P. & Melville, W. K. 2013 Field measurements and scaling of ocean surface wave-breaking statistics. Geophys. Res. Lett 40 (12), 30743079.Google Scholar
Taylor, G. I. 1953 Formation of a vortex ring by giving an impulse to a circular disk and then dissolving it away. J. Appl. Phys. 24 (1), 104.Google Scholar
Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahma, K. K., Williams, A. J., Hwang, P. A. & Kitaigorodskii, S. A. 1996 Estimates of kinetic energy dissipation under breaking waves. J. Phys. Oceanogr. 26 (5), 792807.Google Scholar
Tian, Z., Perlin, M. & Choi, W. 2011 Frequency spectra evolution of two-dimensional focusing wave groups in finite depth water. J. Fluid Mech. 688, 169194.Google Scholar
Veron, F., Saxena, G. & Misra, S. K. 2007 Measurements of the viscous tangential stress in the airflow above wind waves. Geophys. Res. Lett. 34 (19).Google Scholar