Published online by Cambridge University Press: 26 April 2006
When a liquid meniscus held at the exit of a metallic capillary tube is charged to a high voltage V, the free surface often takes the form of a cone whose apex emits a steady microjet, and thus injects a certain charge I and liquid volume Q per unit time into the surrounding gas. This work deals with liquids with relatively large conductivities K, for which the jet diameter dj is much smaller than the diameter dn of the capillary tube. In the limit dj/dn → 0, the structure of the jet (dj and I, in particular) becomes independent of electrostatic parameters such as V or the electrode configuration, being governed mostly by the liquid properties and flow rate Q. Furthermore, the measured current is given approximately by I = f(ε) (γQK/ε)½ for a wide variety of liquids and conditions (ε, and γ are, respectively, the dielectric constant of the liquid and the coefficient of interfacial tension; f(ε) is shown in figure 11). The following explanation is proposed for this behaviour. Convection associated with the liquid flow Q transports the net surface charge towards the cone tip. This upsets the electrostatic surface charge distribution slightly at distances r from the apex large compared to a certain charge relaxation length λ, but substantially when r ∼ λ. When the fluid motion is modelled as a sink flow, λ is of the order of r* = (Qεε0/K)$\frac13$ (ε0 is the electrical permittivity of vacuum). If, in addition, the surface charge density is described through Taylor's theory, the corresponding surface current convected towards the apex scales as Is ∼ (γQK/ε)½, as observed for the spray current. The sink flow hypothesis is shown to be realistic for sufficiently small jet Reynolds numbers. In a few photographs of ethylene glycol cone jets, we find the rough scaling dj ∼ 0.4r* for the jet diameter, which shows that the jet forms as soon as charge relaxation effects set in. In the limit ε [Gt ] 1, an upper bound is found for the convected current at the virtual cone apex, which accounts for only one-quarter of the total measured spray current. The rest of the charge must accordingly reach the head of the jet by conduction through the bulk.