Article contents
The critical layer in linear-shear boundary layers over acoustic linings
Published online by Cambridge University Press: 31 August 2012
Abstract
Acoustics within mean flows are governed by the linearized Euler equations, which possess a singularity wherever the local mean flow velocity is equal to the phase speed of the disturbance. Such locations are termed critical layers, and are usually ignored when estimating the sound field, with their contribution assumed to be negligible. This paper studies fully both numerically and analytically a simple yet typical sheared ducted flow in order to investigate the influence of the critical layer, and shows that the neglect of critical layers is sometimes, but certainly not always, justified. The model is that of a linear-then-constant velocity profile with uniform density in a cylindrical duct, allowing exact Green’s function solutions in terms of Bessel functions and Frobenius expansions. For sources outside the sheared flow, the contribution of the critical layer is found to decay algebraically along the duct as , where is the distance downstream of the source. For sources within the sheared flow, the contribution from the critical layer is found to consist of a non-modal disturbance of constant amplitude and a disturbance decaying algebraically as . For thin boundary layers, these disturbances trigger the inherent convective instability of the flow. Extra care is required for high frequencies as the critical layer can be neglected only in combination with a particular downstream pole. The advantages of Frobenius expansions over direct numerical calculation are also demonstrated, especially with regard to spurious modes around the critical layer.
- Type
- Papers
- Information
- Copyright
- Copyright © Cambridge University Press 2012
References
- 46
- Cited by