Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-26T09:44:08.720Z Has data issue: false hasContentIssue false

The coupling between flow instabilities and incident disturbances at a leading edge

Published online by Cambridge University Press:  20 April 2006

M. E. Goldstein
Affiliation:
National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio 44135

Abstract

It is now generally agreed that an external disturbance field, such as an incident acoustic wave, can effectively couple to instabilities of a flow past a trailing edge. One purpose of the present paper is to show that there are situations where a similar coupling can occur at a leading edge. The process is analysed and the effects of experimentally controllable parameters are assessed. It is important to account for such phenomena when evaluating the effect of external disturbances on transition.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bfchert, D. & Pfizenmaier, E. 1975 J. Fluid Mech. 71, 123144.
Betchov, R. & Criminale, W. O. 1967 Stability of Parallel Flows. Academic.
Bratt, J. B. 1953 Flow patterns in the wake of an oscillating airfoil. Aero. Res. Counc. R & M 2773.Google Scholar
Briggs, R. J. 1964 Electron stream interactions with plasmas. Massachusetts Institute of Technology Press.
Brown, S. N. & Daniels, P. G. 1975 J. Fluid Mech. 67, 743761.
Crighton, D. G. & Leppington, F. G. 1974 J. Fluid Mech. 64, 393414.
Daniels, P. G. 1978 Quart. J. Mech. Appl. Math. 31, 4975.
Drazin, P. G. & Howard, L. M. 1966 Hydrodynamic stability of parallel flow of inviscid fluid. In Advances in Applied Mechanics, vol. 9, pp. 190. Academic.
Gakhov, F. D. 1966 Boundary Value Problems. Addison-Wesley.
Goldstein, M. E. 1976 Aeroacoustics. McGraw-Hill.
Goldstein, M. E. 1978 J. Fluid Mech. 84, 305329.
Goldstein, M. E. 1979 J. Fluid Mech. 91, 601632.
Goldstein, M. E. & Braun, W. H. 1973 Advanced methods for the solution of differential equations. N.A.S.A. SP-316.Google Scholar
Gottlieb, P. 1959 Acoustics in moving media. Ph.D. thesis, Massachusetts Institute of Technology.
Hardisty, M. 1974 The effect of sound on vortex sheets. Ph.D. thesis, University of Dundee.
Heavens, S. N. 1978 J. Fluid Mech. 84, 331335.
Kovasznay, L. S. G. & Fujita, H. 1973 Recent Research on Unsteady Boundary Layers, Proc. IUTAM Symp. 1971, vol. 1, pp. 806833. Presses de l'Universite Laval.
Morkovin, M. V. 1969 Air Force Flight Dyn. Liab. Rep. AFFDL-TR-68-149.
McCartney, M. S. & Grebe, I. 1973 An experimental and theoretical investigation of edgetone phenomenon. Dept. Fluid, Thermal & Aerospace Sci., Case Western Reserve Univ. FTAS TR-73-87.Google Scholar
Noble, B. 1958 Methods Based on the Wiener—Hopf Technique for the Solution of Partial Differential Equations. Pergamon.
Ohashi, H. & Ishikawa, N. 1972 Bull. J.S.M.E. 15 (85), 840847.
Rienstra, S. W. 1979 Edge influence on the response of shear layers to acoustic forcing. Doctor in de Technische Wetenschappen Dissertation, Technische Hogeschool, Eindhoven.
Roos, B. W. 1969 Analytic Functions and Distributions in Physics and Engineering. Wiley.
Tam, C. K. W. 1971 J. Fluid Mech. 46, 757768.
Wagner, H. 1925 Z. angew. Mach. Mech. 5, 1735.