Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-19T17:47:41.820Z Has data issue: false hasContentIssue false

Coriolis effects on the elliptical instability in cylindrical and spherical rotating containers

Published online by Cambridge University Press:  07 August 2007

M. LE BARS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre – CNRS, Aix-Marseille Université, UMR 6594, 49, rue F. Joliot Curie, B.P. 146, F-13384 Marseille Cedex 13, France
S. LE DIZÈS
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre – CNRS, Aix-Marseille Université, UMR 6594, 49, rue F. Joliot Curie, B.P. 146, F-13384 Marseille Cedex 13, France
P. LE GAL
Affiliation:
Institut de Recherche sur les Phénomènes Hors Équilibre – CNRS, Aix-Marseille Université, UMR 6594, 49, rue F. Joliot Curie, B.P. 146, F-13384 Marseille Cedex 13, France

Abstract

The effects of the Coriolis force on the elliptical instability are studied experimentally in cylindrical and spherical rotating containers placed on a table rotating at a fixed rate . For a given set-up, changing the ratio ΩG of global rotation to flow rotation leads to the selection of various unstable modes due to the presence of resonance bands, in close agreement with the normal-mode theory. No instability occurs when ΩG varies between −3/2 and −1/2 typically. On decreasing ΩG toward −1/2, resonance bands are first discretized for ΩG<0 and progressively overlap for −1/2 ≪ ΩG < 0. Simultaneously, the growth rates and wavenumbers of the prevalent stationary unstable mode significantly increase, in quantitative agreement with the viscous short-wavelength analysis. New complex resonances have been observed for the first time for the sphere, in addition to the standard spin-over. We argue that these results have significant implications in geo- and astrophysical contexts.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afanasyev, Y. D. 2002 Experiments on instability of columnar vortex pairs in rotating fluid. Geophys. Astrophys. Fluid Dyn. 96, 3148.CrossRefGoogle Scholar
Aldridge, K., Seyed-Mahmoud, B., Henderson, G. & van Wijngaarden, W. 1997 Elliptical instability of the Earth's fluid core. Phys. Earth Planet. Inter. 103, 365374.CrossRefGoogle Scholar
Bayly, B. J. 1986 Three-dimensional instability of elliptical flow. Phys. Rev. Lett. 57, 21602163.CrossRefGoogle ScholarPubMed
Boubnov, B. M. 1978 Effect of Coriolis force field on the motion of a fluid inside an ellipsoidal cavity. Izv. Atmos. Ocean. Phys. 14, 501504.Google Scholar
Craik, A. D. D. 1989 The stability of unbounded two- and three-dimensional flows subject to body forces: some exact solutions. J. Fluid Mech. 198, 275292.CrossRefGoogle Scholar
Craik, A. D. D. & Criminale, W. O. 1986 Evolution of wavelike disturbances in shear flows – a class of exact solutions of the Navier-Stokes equations. Proc. Roy. Soc. Lond. A 406, 1326.Google Scholar
Eloy, C., LeGal, P. Gal, P. & LeDizès, S. Dizès, S. 2000 Experimental study of the multipolar vortex instability. Phys. Rev. Lett. 85, 34003403.CrossRefGoogle ScholarPubMed
Eloy, C., Le Gal, P. & Le Dizès, S. 2003 Elliptic and triangular instabilities in rotating cylinders. J. Fluid Mech. 476, 357388.CrossRefGoogle Scholar
Friedlander, S. & Vishik, M. 1991 Instability criteria for steady flows of a perfect fluid. Phys. Rev. Lett. 66, 22042206.CrossRefGoogle Scholar
Gledzer, E. B. & Ponomarev, V. M. 1992 Instability of bounded flows with elliptical streamlines. J. Fluid Mech. 240, 130.CrossRefGoogle Scholar
Greenspan, H. P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Kerswell, R. R. 1994 Tidal excitation of hydromagnetic waves and their damping in the Earth. J. Fluid Mech. 274, 219241.CrossRefGoogle Scholar
Kerswell, R. R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34, 83113.CrossRefGoogle Scholar
Kerswell, R. R. & Barenghi, C. F. 1995 On the viscous decay rates of inertial waves in a rotating circular cylinder. J. Fluid Mech. 285, 203214.CrossRefGoogle Scholar
Kerswell, R. R. & Malkus, W. V. R. 1998 Tidal instability as the source for Io's magnetic signature. Geophys. Res. Lett. 25, 603606.CrossRefGoogle Scholar
Kudlick, M. 1966 On the transient motions in a contained rotating fluid. PhD thesis, MIT.Google Scholar
Lacaze, L., Herreman, W., Le Bars, M., Le Dizès, S. & Le Gal, P. 2006 Magnetic field induced by elliptical instability in a rotating spheroid. Geophys. Astrophys. Fluid Dyn. 100, 299317.CrossRefGoogle Scholar
Lacaze, L., LeGal, P. Gal, P. & LeDizès, S. Dizès, S. 2004 Elliptical instability in a rotating spheroid. J. Fluid Mech. 505, 122.CrossRefGoogle Scholar
Le Bars, M. & Le Dizès, S. 2006 Thermo-elliptical instability in a rotating cylindrical shell. J. Fluid Mech. 563, 189198.CrossRefGoogle Scholar
Leblanc, S. & Cambon, C. 1997 On the three dimensional instabilities of plane flows subjected to Coriolis force. Phys. Fluids 9, 13071316.CrossRefGoogle Scholar
Leblanc, S. & Cambon, C. 1998 Effects of the Coriolis force on the stability of Stuart vortices. J. Fluid Mech. 356, 353379.CrossRefGoogle Scholar
Lebovitz, N. R. & Zweibel, E. G. 2004 Magnetoelliptic instabilities. Astrophys. J. 609, 301312.CrossRefGoogle Scholar
Le Dizès, S. 2000 Three-dimensional instability of a multipolar vortex in a rotating flow. Phys. Fluids 12, 27622774.CrossRefGoogle Scholar
Leweke, T. & Williamson, C. H. K. 1998 Cooperative elliptic instability of a vortex pair. J. Fluid Mech. 360, 85119.CrossRefGoogle Scholar
Lifschitz, A. & Hameiri, E. 1991 Local stability conditions in fluid dynamics. Phys. Fluids 3, 26442651.CrossRefGoogle Scholar
Lubow, S. H., Pringle, J. E. & Kerswell, R. R. 1993 Tidal instability of accretion disks. Astrophys. J. 419, 758–67.CrossRefGoogle Scholar
Malkus, W. V. R. 1989 An experimental study of the global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder. Geophys. Astrophys. Fluid Dyn. 48, 123–34.CrossRefGoogle Scholar
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.Google Scholar
Pierrehumbert, R. T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys. Rev. Lett. 57, 21572159.CrossRefGoogle Scholar
Potylitsin, P. & Peltier, W. R. 1999 Three dimensional destabilization of Stuart vortices: the influence of rotation and ellipticity. J. Fluid Mech. 387, 205226.CrossRefGoogle Scholar
Rieutord, M. 2003 Evolution of rotation in binaries: physical processes. Stellar Rotation, Proc. IAV Symp. 215, pp. 394403.Google Scholar
Sipp, D., Lauga, E. & Jacquin, L. 1999 Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys. Fluids 11, 37163728.CrossRefGoogle Scholar
Stegner, A., Pichon, T. & Beunier, M. 2005 Elliptical-inertial instability of rotating Karman streets. Phys. Fluids 17, 066602.CrossRefGoogle Scholar
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.CrossRefGoogle Scholar
Vladimirov, V. A., Tarasov, V. & Ribak, L. Y. 1983 Stability of elliptically deformed rotation of an ideal incompressible fluid in a Coriolis force field. Isv. Atmos. Ocean. Phys. 19, 437442.Google Scholar
Waleffe, F. A. 1990 On the three-dimensional instability of strained vortices. Phys. Fluids A 2, 7680.CrossRefGoogle Scholar