No CrossRef data available.
Article contents
Convergent Richtmyer–Meshkov turbulence by time-resolved planar laser-induced fluorescence measurement
Published online by Cambridge University Press: 14 March 2025
Abstract
We report the first measurement of turbulent mixing developing from the convergent Richtmyer–Meshkov (RM) instability using time-resolved planar laser-induced fluorescence in a semi-annular convergent shock tube. A membraneless yet sharp interface with random short-wavelength perturbations, but controllable long-wavelength perturbations, is created by an automatically retractable plate, enhancing the reproducibility and reliability of RM turbulence experiments. The cylindrical air/SF$_6$ interface formed is first subjected to a convergent shock, then to its reflected shock and subsequently transits to turbulent mixing. It is found that the mixing width after reshock has a linear growth rate more than twice the rate in planar geometry. Also, the mixing width does not present power-law growth at late stages as in a planar geometry. However, the scalar spectrum and transition criterion obtained are similar to their planar counterparts. These findings indicate that the geometric constraint greatly affects the large scales of the flow, while having a weaker effect on the small scales. It is also found that the reflected shock significantly increases both scale separation and Reynolds number, explaining the rapid transition to turbulence following reshock.
- Type
- JFM Papers
- Information
- Copyright
- © The Author(s), 2025. Published by Cambridge University Press
References
