Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-20T20:50:31.244Z Has data issue: false hasContentIssue false

Convectons, anticonvectons and multiconvectons in binary fluid convection

Published online by Cambridge University Press:  13 December 2010

ISABEL MERCADER
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
ORIOL BATISTE*
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
ARANTXA ALONSO
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Barcelona 08034, Spain
EDGAR KNOBLOCH
Affiliation:
Department of Physics, University of California, Berkeley, CA 94720, USA
*
Email address for correspondence: [email protected]

Abstract

Binary fluid mixtures with a negative separation ratio heated from below exhibit steady spatially localized states called convectons for supercritical Rayleigh numbers. Numerical continuation is used to compute such states in the presence of both Neumann boundary conditions and no-slip no-flux boundary conditions in the horizontal. In addition to the previously identified convectons, new states referred to as anticonvectons with a void in the centre of the domain, and wall-attached convectons attached to one or other wall are identified. Bound states of convectons and anticonvectons called multiconvecton states are also computed. All these states are located in the so-called snaking or pinning region in the Rayleigh number and may be stable. The results are compared with existing results with periodic boundary conditions.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alonso, A., Batiste, O., Knobloch, E. & Mercader, I. 2010 Convectons. In Localized States in Physics: Solitons and Patterns (ed. Descalzi, O., Clerc, M. G., Residori, S. & Assanto, G.), pp. 109126. Springer.Google Scholar
Alonso, A., Batiste, O., Meseguer, A. & Mercader, I. 2007 Complex dynamical states in binary mixture convection with weak negative Soret coupling. Phys. Rev. E 75, 026310 (115).Google ScholarPubMed
Barten, W., Lücke, M., Kamps, M. & Schmitz, R. 1995 Convection in binary mixtures. II. Localized traveling waves. Phys. Rev. E 51, 56625680.Google ScholarPubMed
Batiste, O. & Knobloch, E. 2005 a Simulations of localized states of stationary convection in 3He–4He mixtures. Phys. Rev. Lett. 95, 244501 (14).CrossRefGoogle ScholarPubMed
Batiste, O. & Knobloch, E. 2005 b Simulations of oscillatory convection in 3He–4He mixtures in moderate aspect ratio containers. Phys. Fluids 17, 064102 (114).CrossRefGoogle Scholar
Batiste, O., Knobloch, E., Alonso, A. & Mercader, I. 2006 Spatially localized binary-fluid convection. J. Fluid Mech. 560, 149158.Google Scholar
Beck, M., Knobloch, J., Lloyd, D. J. B., Sandstede, B. & Wagenknecht, T. 2009 Snakes, ladders and isolas of localized patterns. SIAM J. Math. Anal. 41, 936972.CrossRefGoogle Scholar
Bergeon, A., Burke, J., Knobloch, E. & Mercader, I. 2008 Eckhaus instability and homoclinic snaking. Phys. Rev. E 78, 046201 (116).Google ScholarPubMed
Bergeon, A. & Knobloch, E. 2008 Spatially localized states in natural doubly diffusive convection. Phys. Fluids 20, 034102 (18).Google Scholar
Blanchflower, S. 1999 Magnetohydrodynamic convectons. Phys. Lett. A 261, 7481.Google Scholar
Blanchflower, S. & Weiss, N. 2002 Three-dimensional magnetohydrodynamic convectons. Phys. Lett. A 294, 297303.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2007 a Snakes and ladders: localized states in the Swift–Hohenberg equation. Phys. Lett. A 360, 681688.CrossRefGoogle Scholar
Burke, J. & Knobloch, E. 2007 b Homoclinic Snaking: Structure And Stability. Chaos 17, 037102 (115).CrossRefGoogle ScholarPubMed
Burke, J. & Knobloch, E. 2009 Multipulse states in the Swift–Hohenberg equation. Discrete Contin. Dyn. Syst. Suppl. 109–117.Google Scholar
Champneys, A. R. 1998 Homoclinic orbits in reversible systems and their applications in mechanics, fluids and optics. Physica D 112, 158186.Google Scholar
Coullet, P., Riera, C. & Tresser, C. 2000 Stable static localized structures in one dimension. Phys. Rev. Lett. 84, 30693072.Google Scholar
Crawford, J. D., Golubitsky, M., Gomes, M. G. M., Knobloch, E. & Stewart, I. N. 1991 Boundary conditions as symmetry constraints. In Singularity Theory and Its Applications, Warwick 1989, Part II (ed. Roberts, M. & Stewart, I.), Lecture Notes in Mathematics 1463, pp. 6379. Springer.Google Scholar
Crawford, J. D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid mechanics. Annu. Rev. Fluid Mech. 23, 341387.CrossRefGoogle Scholar
Dawes, J. H. P. 2009 Modulated and localized states in a finite domain. SIAM J. Appl. Dyn. Syst. 8, 909930.CrossRefGoogle Scholar
Ghorayeb, K. & Mojtabi, A. 1997 Double diffusive convection in a vertical rectangular cavity. Phys. Fluids 9, 23392348.Google Scholar
van der Heijden, G. H. M., Champneys, A. R. & Thompson, J. M. T. 2002 Spatially complex localisation in twisted elastic rods constrained to a cylinder. Intl J. Solids Struct. 39, 18631883.CrossRefGoogle Scholar
Houghton, S. M. & Knobloch, E. 2009 Homoclinic snaking in bounded domains. Phys. Rev. E 80, 026210 (115).Google ScholarPubMed
Hunt, G. W., Peletier, M. A., Champneys, A. R., Woods, P. D., Ahmer Wadee, M., Budd, C. J. & Lord, G. J. 2000 Cellular buckling in long structures. Nonlinear Dyn. 21, 329.CrossRefGoogle Scholar
Jung, D. & Lücke, M. 2007 Bistability of moving and self-pinned fronts of supercritical localized convection structures. Europhys. Lett. 80, 14002 (16).CrossRefGoogle Scholar
Knobloch, J., Lloyd, D. J. B., Sandstede, B. & Wagenknecht, T. 2010 Isolas of 2-pulse solutions in homoclinic snaking scenarios. J. Dyn. Diff. Eqs. (in press).CrossRefGoogle Scholar
Kolodner, P. 1993 Coexisting traveling waves and steady rolls in binary-fluid convection. Phys. Rev. E 48, R665R668.Google ScholarPubMed
Kolodner, P., Glazier, J. A. & Williams, H. 1990 Dispersive chaos in one-dimensional traveling-wave convection. Phys. Rev. Lett. 65, 15791582.Google Scholar
Kolodner, P., Surko, C. M. & Williams, H. 1989 Dynamics of traveling waves near onset of convection in binary fluid mixtures. Physica D 37, 319333.Google Scholar
Kozyreff, G., Assemat, P. & Chapman, S. J. 2009 Influence of boundaries on localized patterns. Phys. Rev. Lett. 103, 164501 (14).CrossRefGoogle ScholarPubMed
Lee, K. J., McCormick, W. D., Pearson, J. E. & Swinney, H. L. 1994 Experimental observation of self-replicating spots in a reaction-diffusion system. Nature 369, 215218.CrossRefGoogle Scholar
Lioubashevski, O., Hamiel, Y., Agnon, A., Reches, Z. & Fineberg, J. 1999 Oscillons and propagating solitary waves in a vertically vibrated colloidal suspension. Phys. Rev. Lett. 83, 31903193.CrossRefGoogle Scholar
LoJacono, D. Jacono, D., Bergeon, A. & Knobloch, E. 2010 Spatially localized binary fluid convection in a porous medium. Phys. Fluids 22, 073601 (113).Google Scholar
Mercader, I., Alonso, A. & Batiste, O. 2004 Numerical analysis of the Eckhaus instability in travelling-wave convection in binary mixtures. Eur. Phys. J. E 15, 311318.Google ScholarPubMed
Mercader, I., Batiste, O. & Alonso, A. 2006 Continuation of travelling-wave solutions of the Navier–Stokes equations. Intl J. Numer. Methods Fluids 52, 707721.Google Scholar
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2009 Localized pinning states in closed containers: homoclinic snaking without bistability. Phys. Rev. E 80, 025201(R)-14.Google ScholarPubMed
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2010 a Convectons in periodic and bounded domains. Fluid Dyn. Res. 42, 025505 (110).Google Scholar
Mercader, I., Batiste, O., Alonso, A. & Knobloch, E. 2010 b Dissipative solitons in binary fluid convection. Discrete Contin. Dyn. Syst. Suppl. (in press).Google Scholar
Pomeau, Y. 1986 Front motion, metastability and subcritical bifurcations in hydrodynamics. Physica D 23, 311.Google Scholar
Richter, R. & Barashenkov, I. V. 2005 Two-dimensional solitons on the surface of magnetic fluids. Phys. Rev. Lett. 94, 184503 (14).CrossRefGoogle ScholarPubMed
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501 (14).Google Scholar
Steinberg, V., Fineberg, J., Moses, E. & Rehberg, I. 1989 Pattern selection and transition to turbulence in propagating waves. Physica D 37, 359383.Google Scholar
Umbanhowar, P. B., Melo, F. & Swinney, H. L. 1996 Localized excitations in a vertically vibrated granular layer. Nature 382, 793796.Google Scholar
Vladimirov, A. G., McSloy, J. M., Skryabin, D. V. & Firth, W. J. 2002 Two-dimensional clusters of solitary structures in driven optical cavities. Phys. Rev. E 65, 046606 (111).Google Scholar
Wadee, M. K., Coman, C. D. & Bassom, A. P. 2002 Solitary wave interaction phenomena in a strut buckling model incorporating restabilisation. Physica D 163, 2648.Google Scholar
Woods, P. D. & Champneys, A. R. 1999 Heteroclinic tangles and homoclinic snaking in an unfolding of a degenerate Hamiltonian–Hopf bifurcation. Physica D 129, 147170.Google Scholar