Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-07T00:00:08.879Z Has data issue: true hasContentIssue false

Convective instability in rotating liquid 3He-4He mixtures

Published online by Cambridge University Press:  26 April 2006

M. S. Thurlow
Affiliation:
Forecasting Research, Meteorological Office, Bracknell, Berkshire, RG12 2SZ, UK
B. J. Brooks
Affiliation:
School of Physics, University of Bath, Bath, BA2 7AY, UK
P. G. J. Lucas
Affiliation:
Department of Physics and Astronomy, The University, Manchester M13 9PL, UK
M. R. Ardron
Affiliation:
Department of Chemical and Process Engineering, Merz Court, The University, Newcastle on Tyne, UK
J. K. Bhattacharjee
Affiliation:
Department of Physics, Indian Institute of Technology, Kanpur 208016, India
A. L. Woodcraft
Affiliation:
Department of Physics and Astronomy, The University, Manchester M13 9PL, UK

Abstract

Thermal convection is investigated experimentally in a dilute liquid mixture of 3He in 4He at four temperatures between 20 and 100 mK above the superfluid transition temperature, chosen for their proximity to the codimension-two and hydrodynamic tricritical points. Two experimental cells of aspect ratio 2.76 and 1.00 were used. For the cell with the higher aspect ratio, two convective transitions at each of the four temperatures were observed above a critical angular velocity, and only one observed below. At temperatures lower than that of the hydrodynamic tricritical point the transition with the lower critical Rayleigh number is hysteretic for all angular velocities; above this temperature hysteresis is absent. The critical Rayleigh numbers are compared with theoretical predictions that take into account the existence of convection modes with azimuthal angular dependence. In the case of the cell with the smaller aspect ratio thermal relaxation oscillations were observed when heating from below. Convective thresholds were again observed but their critical Rayleigh numbers are almost independent of angular velocity. Some suggestions are advanced for this unexpected behaviour.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. & Rehberg, I. 1986 Convection in a binary mixture heated from below. Phys. Rev. Lett. 56, 13731376.Google Scholar
Antoranz, J. C. & Velarde, M. G. 1978 Soret-driven convective instability with rotation. Phys. Lett. 65A, 377379.Google Scholar
Antoranz, J. C. & Velarde, M. G. 1979 Thermal diffusion and convective stability: The role of uniform rotation of the container. Phys. Fluids 22, 10381043.Google Scholar
Ardron, M. R., Lucas, P. G. J., Onions, T., Terrett, M. D. J. & Thurlow, M. S. 1990 Rotating cryogenic platform. Physica B 165/166, 5556.Google Scholar
Ardron, M. R., Lucas, P. G. J. & Stein, N. D. 1992 Exact calculation of convection thresholds in rotating binary liquid mixtures. Phys. Fluids A4, 664670.Google Scholar
Barkley, D. & Tuckerman, L. S. 1989 Traveling waves in axisymmetric convection: the role of sidewall conductivity. Physica D 37, 288294.Google Scholar
Behringer, R. P., Gao, H. & Shaumeyer, J. N. 1983 Time dependence in Rayleigh-Bénard convection with a variable cylindrical geometry. Phys. Rev. Lett. 50, 11991202.Google Scholar
Bhattacharjee, J. K. 1988a Preferred patterns in convection in rotating binary mixtures. Phys. Rev. A 37, 13681370.Google Scholar
Bhattacharjee, J. K. 1988b Convection in rotating binary mixtures. I. Thresholds. Phys. Fluids 31, 24562461.Google Scholar
Bhattacharjee, J. K. 1988c Convection in rotating binary mixtures. II. Küppers-Lortz instability. Phys. Fluids 31, 24622466.Google Scholar
Bhattacharjee, J. K. 1989 Convection in rotating binary mixtures. III. Galerkin models. Phys. Fluids A 1, 19381948.Google Scholar
Brand, M. R., Hohenberg, P. C. & Steinberg, V. 1984 Codimension-2 bifurcations for convection in binary fluid mixtures. Phys. Rev. A 30, 25482561.Google Scholar
Buell, J. C. & Catton, I. 1983 Effect of rotation on the stability of a bounded cylindrical layer of fluid heated from below. Phys. Fluids 26, 892896.Google Scholar
Clever, R. M. & Busse, F. H. 1979 Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609627.Google Scholar
Clune, T. & Knobloch, E. 1992 Mean flow suppression by endwalls in oscillatory binary fluid convection. Physica D 61, 106112.Google Scholar
Delong, L. E., Symko, O. G. & Wheatley, J. C. 1971 Continuously operating 4He evaporation refrigerator. Rev. Sci. Instrum. 42, 147150.Google Scholar
Ecke, R. E., Zhong, F. & Knobloch, E. 1992 Hopf bifurcation with broken reflection symmetry in rotating Rayleigh-Bénard convection. Europhys. Lett. 19, 177182.Google Scholar
Gao, H. & Behringer, R. P. 1986 Convective instabilities of a normal liquid 3He-4He mixture. Phys. Rev. A 34, 697700.Google Scholar
Gasparini, F. & Moldover, M. R. 1975 Specific heat of 4He and 3He-4He mixtures at their λ transition. Phys. Rev. B 12, 93113.Google Scholar
Gestrich, D., Walsworth, R. & Meyer, H. 1984 Transport properties in 3He-4He mixtures near the superfluid transition. J. Low Temp. Phys. 54, 3761.Google Scholar
Goldstein, H. F. & Knobloch, E. 1991 Linear stability of rotating Rayleigh-Bénard convection in a finite cylinder. Bull. Am. Phys. Soc. 36, 26492650.Google Scholar
Goldstein, H. F., Knobloch, E., Mercader, I. & Net, M. 1993 Convection in a rotating cylinder. Part 1. Linear theory for moderate Prandtl numbers. J. Fluid Mech. 248, 583604.Google Scholar
Goldstein, H. F., Knobloch, E., Mercader, I. & Net, M. 1994 Convection in a rotating cylinder. Part 2. Linear theory for low Prandtl numbers. J. Fluid Mech. 262, 293324.Google Scholar
Kakizaki, A. & Satoh, T. 1976 Thermodynamic properties of 3He-4He mixtures near Tλ. J. Low Temp. Phys. 24, 6784.Google Scholar
Kierstead, H. A. 1976 Dielectric constant, molar volume, and phase diagram of saturated liquid 3He-4He mixtures. J. Low Temp. Phys. 24, 497512.Google Scholar
Kolodner, P. 1994 Stable, unstable, and defected confined states of traveling-wave convection. Phys. Rev. E 50, 27312755.Google Scholar
Lee, G. W. T., Lucas, P. & Tyler, A. 1983 Onset of Rayleigh-Bénard convection in binary liquid mixtures of 3He in 4He. J. Fluid Mech. 135, 235259.Google Scholar
Lucas, P. & Donnelly, J. A. 1981 Computer-automated ratio transformer bridge. Rev. Sci. Instrum. 52, 582584.Google Scholar
Lucas, P. G. J., Pfotenhauer, J. M. & Donnelly, R. J. 1983 Stability and heat transfer of rotating cryogens. Part 1. Influence of rotation on the onset of convection in liquid 4He. J. Fluid Mech. 129, 251264.Google Scholar
Lucas, P. G. J., Thurlow, M. S., Ardron, M. R., Bhattacharjee, J. K., Kershaw, B. J., Terrett, M. D. J. & Woodcraft, A. L. 1994 Rayleigh-Bénard convection in rotating liquid 3He-4He mixtures. Physica B 194/196, 841842.Google Scholar
Mercader, I., Net, M. & Knobloch, E. 1995 Binary fluid convection in a cylinder. Phys. Rev. E 51, 339350.Google Scholar
Meyer, C., Ahlers, G. & Cannell, D. S. 1991 Stochastic influences on pattern formation in Rayleigh-Bénard convection: ramping experiments. Phys. Rev. A 44, 25142537.Google Scholar
Nakayama, T. 1989 Kapitza thermal boundary resistance and interactions of helium quasiparticles with surfaces. In Progress in Low Temperature Physics, Vol. 12 (ed. D. Brewer), pp. 115194. North-Holland.
Net, M., Mercader, I. & Knobloch, E. 1995 Binary fluid convection in a rotating cylinder. Phys. Fluids 7, 15531567.Google Scholar
Onions, T., Ardron, M. R., Lucas, P. G. J., Terrett, M. D. J. & Thurlow, M. S. 1990 Codimension-two and hydrodynamic tricritical points in 3He-4He mixtures. Physica B 165/166, 521522.Google Scholar
Packard, R. E. & Williams, G. A. 1974 A triaxial rotating vacuum seal. Rev. Sci. Instrum 45, 1179.Google Scholar
Pearlstein, A. J. 1981 Effect of rotation on the stability of a doubly diffusive fluid layer. J. Fluid Mech. 103, 389412.Google Scholar
Pfotenhauer, J. M., Lucas, P. G. J. & Donnelly, R. J. 1984 Stability and heat transfer of rotating cryogens. Part 2. Effects of rotation on heat-transfer properties of convection in liquid 4He. J. Fluid Mech. 145, 239252.Google Scholar
Pfotenhauer, J. M., Niemela, J. J. & Donnelly, R. J. 1987 Stability and heat transfer of rotating cryogens. Part 3. Effects of finite geometry and rotation on the onset of convection. J. Fluid Mech. 175, 8596.Google Scholar
Rehberg, I. & Ahlers, G. 1985 Experimental observation of a codimension-two bifurcation in a binary mixture. Phys. Rev. Lett. 55, 500503.Google Scholar
Ryschkewitsch, M. G. & Meyer, H. 1979 Concentration susceptibility of 3He-4He mixtures near the superfluid transition. J. Low Temp. Phys. 35, 103133.Google Scholar
Schöpf, W. & Zimmermann, W. 1993 Convection in binary fluids: Amplitude equations, codimension-2 bifurcation, and thermal fluctuations. Phys. Rev. E 47, 17391764.Google Scholar
Sherman, R. H., Sydoriak, S. G. & Roberts, T. R. 1964 The 19623He scale of temperatures. IV. Tables. J. Res. Natl. Bureau of Standards A. Physics and Chemistry 68A, 579588.Google Scholar
Sullivan, T., & Ahlers, G. 1988a Hopf bifurcation to convection near the codimension-two point in a 3He-4He mixture. Phys. Rev. Lett. 61, 7881.Google Scholar
Sullivan, T., & Ahlers, G. 1988b Nonperiodic time dependence at the onset of convection in a binary liquid mixture. Phys. Rev. A 38, 31433146.Google Scholar
Sullivan, T. S., Steinberg, V. & Ecke, R. E. 1993 Thermal convection and thermal conductivity of nondilute 3He-4He mixtures. J. Low Temp. Phys. 90, 343354.Google Scholar
Sydoriak, S. G. & Roberts, T. R. 1960 Vapour pressure of 3He-4He mixtures. Phys. Rev. 118, 901912.Google Scholar
Takada, T. & Watanabe, T. 1980 Specific heat near the lambda point in 4He and 3He-4He mixtures: test of universality of the critical exponent and the amplitude ratio, and observation of the critical-tricritical crossover effect. J. Low Temp. Phys. 41, 221241.Google Scholar
Tuckerman, L. S. & Barkley, D. 1988 Global bifurcation to traveling waves in axisymmetric convection. Phys. Rev. Lett. 61, 408411.Google Scholar
Tuttle, J., Zhong, F. & Meyer, H. 1991 Thermal transport properties in the normal phase of dilute 3H-4He mixtures. J. Low Temp. Phys. 83, 283305 (and erratum 98, 1995, 631–633).Google Scholar
Wang, S., Howald, C. & Meyer, H. 1990 Shear viscosity of liquid 4He and 3He-4He mixtures, especially near the superfluid transition. J. Low Temp. Phys. 79, 151187.Google Scholar
Warkentin, P. A., Haucke, H. J., Lucas, P. & Wheatley, J. C. 1980 Stationary convection in dilute solutions of 3He in superfluid 4He. Proc. Natl. Acad. Sci. 77, 69836987.Google Scholar
Webeler, R. W. H. & Allen, G. 1972 Lambda-point measurement of ηρn for pure 3He and for three 3He–4He mixtures. Phys. Rev. A 5, 18201827.Google Scholar
White, G. K. 1979 Experimental Techniques in Low Temperature Physics. Clarendon
Zhong, F., Ecke, R. E. & Steinberg, V. 1991 Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection. Phys. Rev. Lett. 67, 24732476.Google Scholar
Zhong, F., Ecke, R. E. & Steinberg, V. 1993 Rotating Rayleigh-Bénard convection: asymmetric modes and vortex states. J. Fluid Mech. 249, 135159.Google Scholar
Zhong, F., Tuttle, J. & Meyer, H. 1990 Transport properties in the superfluid phase of dilute 3He-4He mixtures near Tλ. J. Low Temp. Phys. 79, 954.Google Scholar