Published online by Cambridge University Press: 28 March 2006
A theoretical study has been made of an experiment by Tritton & Zarraga (1967) in which eonvective motions were generated in a horizontal layer of water (cooled from above) by the application of uniform heating. The marginal stability problem for such a layer is solved, and a critical Rayleigh number of 2772 is obtained, at which patterns of wave-number 2·63 times the reciprocal depth of the layer are marginally stable.
The remainder of the paper is devoted to the finite amplitude convection which ensues when the Rayleigh number, R, exceeds 2772. The theory is approximate, the basic simplification being that, to an adequate approximation, Fourier decompositions of the convective motions in the horizontal (x, y) directions can be represented by their dominant (planform) terms alone. A discussion is given of this hypothesis, with illustrations drawn from the (better studied) Bénard situation of convection in a layer heated below, cooled from above, and containing no heat sources. The hypothesis is then used to obtain ‘mean-field equations’ for the convection. These admit solutions of at least three distinct forms: rolls, hexagons with upward flow at their centres, and hexagons with downward flow at their centres. Using the hypothesis again, the stability of these three solutions is examined. It is shown that, for all R, a (neutrally) stable form of convection exists in the form of rolls. The wave-number of this pattern increases gradually with R. This solution is, in all respects, independent of Prandtl number. It is found, numerically, that the hexagons with upward motions in their centres are unstable, but that the hexagons with downward motions at their centres are completely stable, provided R exceeds a critical value (which depends on Prandtl number, P, and which for water is about 3Rc), and provided the wave-number of the pattern lies within certain limits dependent on R and P.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.