Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-25T09:54:20.661Z Has data issue: false hasContentIssue false

Convection in a porous cavity

Published online by Cambridge University Press:  12 April 2006

Ken L. Walker
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, California 94305
George M. Homsy
Affiliation:
Department of Chemical Engineering, Stanford University, Stanford, California 94305

Abstract

Convection in a porous cavity driven by heating in the horizontal is analysed by a number of different techniques which yield a fairly complete description of the two-dimensional solutions. The solutions are governed by two dimensionless parameters: the Darcy-Rayleigh number R and the cavity aspect ratio A. We first find solutions valid for shallow cavities, A → 0, by using matched asymptotic expansions. These solutions are given up to O(A6R4). For A fixed, we find regular expansions in R by semi-numerical techniques, up to O(R30) in some cases. Series-improvement techniques then enable us to cover the range 0 ≤ R ≤ ∞. A limited result regarding bifurcations is noted. Finally, for R → ∞ with A fixed, we propose a self-consistent boundary-layer theory which extends previous approximate work. The results obtained by these different methods of solution are in good agreement with each other and with experiments.

Type
Research Article
Copyright
© 1978 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, G. A. 1965 Adv. Theor. Phys. 1, 1.
Bankvall, C. 1974 Wärme- und Stoffübertragung 7, 22.
Caltagirone, J. P. 1975 J. Fluid Mech. 72, 269.
Chan, B., Ivey, C. & Barry J. 1970 J. Heat Transfer 2, 21.
Cloupeau, M. & Klarsfeld, S. 1973 Appl. Optics 12, 198.
Combarnous, M. & Bories, S. 1975 Adv. Hydrosci. 10, 231.
Cormack, D., Leal, L. G. & Imberger, J. 1974 J. Fluid Mech. 65, 209.
Domb, C. & Sykes, M. F. 1957 Proc. Roy. Soc. A 240, 214.
Frost, P. A. & Harper, E. 1976 SIAM Rev. 18, 62.
GAUNT D. S. & GUTTMAN, A. J. 1974 In Phase Transitions and Critical Phenomena (ed. C. Domb & M. S. Green), vol. 3, p. 181. Academic Press.
Gill, A. E. 1966 J. Fluid Mech. 26, 515.
Holst, P. & Aziz, K. 1972 Can. J. Chem. Engrs 50, 232.
Horne, R. 1975 Transient effects in geothermal convective systems. Ph.D. thesis, University of Auckland.
Horne, R. & O'SULLIVAN, M.1974 J. Fluid Mech. 66, 339.
Kassoy, D. & Zebib, A. 1975 Phys. Fluids 18, 1649.
Klarsfeld, S. 1970 Rev. Gén. Thermique 9, 1403.
Palm, E., Weber, J. & Kvernvold, O. 1972 J. Fluid Mech. 54, 153.
Quon, C. 1977 J. Heat Transfer 99, 340.
Stewartson, K. 1976 Quart. J. Mech. Appl. Math. 29, 377.
Straus, J. 1974 J. Fluid Mech. 64, 51.
Van Dyke, M. 1974 Quart. J. Mech. Appl. Math. 27, 423.
Van Dyke, M. 1977 In Singular Perturbation Boundary Layer Theory (ed. A. Dold & B. Eckmann). Springer.
Van Dyke, M. 1978 J. Fluid Mech. 86, 129.
Weber, J. 1975 J. Heat Mass Transfer 18, 569.