Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-21T08:31:09.840Z Has data issue: false hasContentIssue false

A conundrum in conversion

Published online by Cambridge University Press:  28 September 2011

Stefan G. Llewellyn Smith*
Affiliation:
Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla CA 92093-0411, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Maintaining the stratification of the ocean requires deep mixing. Part of the energy that provides this mixing is transferred over topography from the surface tides into the internal tides. Numerous theoretical, numerical and experimental studies have aimed at quantifying the energy transfer of this conversion mechanism. Maas (J. Fluid Mech., this issue, vol. 684, 2011, pp. 5–24) constructs model topographies with localized response and no energy transfer into the propagating internal tide, a surprising result that raises questions about models of tidal conversion.

Type
Focus on Fluids
Copyright
Copyright © Cambridge University Press 2011

References

1. Baines, P. G. 1973 The generation of internal tides by flat-bump topography. Deep-Sea Res. 20, 179205.Google Scholar
2. Bell, T. H. 1975 Lee waves in stratified flows with simple harmonic time dependence. J. Fluid Mech. 67, 705722.CrossRefGoogle Scholar
3. Dai, D., Wang, W., Zhang, Q., Qiao, F. & Yuan, Y. 2011 Eigen solutions of internal waves over subcritical topography. Acta Oceanol. Sin. 30, 18.CrossRefGoogle Scholar
4. Egbert, G. D. & Ray, R. D. 2000 Signification dissipation of tidal energy in the deep ocean inferred from satellite altimeter data. Nature 405, 775778.CrossRefGoogle Scholar
5. Garrett, C. 2003 Internal tides and ocean mixing. Science 301, 18581859.CrossRefGoogle ScholarPubMed
6. Garrett, C. & Kunze, E. 2007 Internal tide generation in the deep ocean. Annu. Rev. Fluid Mech. 39, 5787.CrossRefGoogle Scholar
7. Hazewinkel, J., Tsimitri, C., Maas, L. R. M. & Dalziel, S. B. 2010 Observations on the robustness of internal wave attractors to perturbations. Phys. Fluids 22, 107102.CrossRefGoogle Scholar
8. Jeffreys, H. 1920 Tidal friction in shallow seas. Phil. Trans. R. Soc. Lond. 221, 239264.Google Scholar
9. John, F. 1941 The Dirichlet problem for a hyperbolic equation. Am. J. Math. 63, 141154.CrossRefGoogle Scholar
10. Lam, F.-P. A. & Maas, L. R. M. 2008 Internal wave focusing revisited: a reanalysis and new theoretical links. Fluid Dyn. Res. 40, 95122.CrossRefGoogle Scholar
11. Llewellyn Smith, S. G. & Young, W. R. 2002 Conversion of the barotropic tide. J. Phys. Oceanogr. 32, 15541566.2.0.CO;2>CrossRefGoogle Scholar
12. Llewellyn Smith, S. G. & Young, W. R. 2003 Tidal conversion at a very steep ridge. J. Fluid Mech. 495, 175191.CrossRefGoogle Scholar
13. Maas, L. R. M. 2011 Topographies lacking tidal conversion. J. Fluid Mech. 684, 524.CrossRefGoogle Scholar
14. Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F.-P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557561.CrossRefGoogle Scholar
15. Motter, A. E. & Rosa, M. A. F. 1998 Hyperbolic calculus. Adv. Appl. Clifford Alg. 8, 109128.CrossRefGoogle Scholar
16. Munk, W. 1997 Once again: once again – tidal friction. Prog. Oceanogr. 40, 735.CrossRefGoogle Scholar
17. Munk, W. & Wunsch, C. 1998 Abyssal recipes. Part II. Energetics of tidal and wind mixing. Deep-Sea Res. I 45, 19772010.CrossRefGoogle Scholar
18. Ray, R. D. & Mitchum, G. T. 1997 Surface manifestations of internal tides in the deep ocean: observations from altimetry and island gauges. Prog. Oceanogr. 40, 135162.CrossRefGoogle Scholar
19. St Laurent, L. & Garrett, C. 2002 The role of internal tides in mixing the deep ocean. J. Phys. Oceanogr. 32, 28822899.2.0.CO;2>CrossRefGoogle Scholar
20. Taylor, G. I. 1919 Tidal friction in the Irish sea. Phil. Trans. R. Soc. Lond. 220, 193.Google Scholar
21. Vlasenko, V., Stashchuk, N. & Hutter, K. 2005 Baroclinic Tides: Theoretical Modelling and Observational Evidence. Cambridge University Press.CrossRefGoogle Scholar
22. Wunsch, C. 1968 On the propagation of internal waves up a slope. Deep-Sea Res. 15, 251258.Google Scholar