Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T11:16:28.087Z Has data issue: false hasContentIssue false

Continuum modelling and simulation of granular flows through their many phases

Published online by Cambridge University Press:  18 August 2015

Sachith Dunatunga
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Ken Kamrin*
Affiliation:
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
*
Email address for correspondence: [email protected]

Abstract

We propose and numerically implement a constitutive framework for granular media that allows the material to traverse through its many common phases during the flow process. When dense, the material is treated as a pressure-sensitive elasto-viscoplastic solid obeying a yield criterion and a plastic flow rule given by the ${\it\mu}(I)$ inertial rheology of granular materials. When the free volume exceeds a critical level, the material is deemed to separate and is treated as disconnected, stress-free media. A material point method (MPM) procedure is written for the simulation of this model and many demonstrations are provided in different geometries, which highlight the ability of the numerical model to handle transitions through dense and disconnected states. By using the MPM framework, extremely large strains and nonlinear deformations, which are common in granular flows, are representable. The method is verified numerically and its physical predictions are validated against many known experimental phenomena, such as Beverloo’s scaling in silo flows, jointed power-law scaling of the run-out distance in granular-column-collapse problems, and various known behaviours in inclined chute flows.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Soga, K. & Bandara, S. 2013 Material point method for coupled hydromechanical problems. Geoenviron. Engng 140 (3), 116.Google Scholar
Andersen, S. & Andersen, L.2009 Analysis of stress updates in the material-point method. In Proceedings of the 22nd Nordic Seminar on Computational Mechanics, pp. 129–134. Aalborg.Google Scholar
Andersen, S. & Andersen, L. 2010 Analysis of spatial interpolation in the material-point method. Comput. Struct. 88 (7–8), 506518.Google Scholar
Andersen, S. & Andersen, L.2013 Post-processing in the material-point method. Tech. Rep. Aalborg: Aalborg University.Google Scholar
Balmforth, N. J. & Kerswell, R. R. 2005 Granular collapse in two dimensions. J. Fluid Mech. 538, 399428.CrossRefGoogle Scholar
Bandara, S. & Soga, K. 2015 Coupling of soil deformation and pore fluid flow using Material Point Method. Comput. Geotech. 63, 199214.Google Scholar
Bardenhagen, S. G. & Kober, E. M. 2004 The generalized interpolation material point method. Comput. Model. Engng Sci. 5 (6), 477495.Google Scholar
Beverloo, W. A., Leniger, H. A. & van de Velde, J. 1961 The flow of granular solids through orifices. Chem. Engng Sci. 15 (3–4), 260269.Google Scholar
Brackbill, J., Kothe, D. & Ruppel, H. 1988 FLIP: a low-dissipation, particle-in-cell method for fluid flow. Comput. Phys. Commun. 48, 2538.Google Scholar
Brockbank, R., Huntley, J. M. & Ball, R. C. 1997 Contact force distribution beneath a three-dimensional granular pile. J. Phys. II 7 (10), 15211532.Google Scholar
Buzzi, O., Pedroso, D. M. & Giacomini, A. 2008 Caveats on the implementation of the generalized material point method. Comput. Model. Engng Sci. 1 (1), 121.Google Scholar
Cundall, P. A. & Strack, O. D. L. 1979 A discrete numerical model for granular assemblies. Geotechnique 29 (1), 4765.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.Google Scholar
Dormand, J. & Prince, P. 1980 A family of embedded Runge–Kutta formulae. J. Comput. Appl. Maths 6 (1), 1926.CrossRefGoogle Scholar
Geng, J., Longhi, E., Behringer, R. & Howell, D. 2001 Memory in two-dimensional heap experiments. Phys. Rev. E 64 (6), 060301.Google Scholar
Gurtin, M. E., Fried, E. & Anand, L. 2010 The Mechanics and Thermodynamics of Continua. Cambridge University Press.CrossRefGoogle Scholar
Harlow, F. H. 1964 The particle-in-cell computing method for fluid dynamics. Meth. Comput. Phys. 3 (3), 319343.Google Scholar
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110 (17), 67306735.CrossRefGoogle ScholarPubMed
Henann, D. L. & Kamrin, K. 2014 Continuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett. 113 (17), 178001.CrossRefGoogle ScholarPubMed
Jenkins, J. T. & Berzi, D. 2012 Kinetic theory applied to inclined flows. Granul. Matt. 14, 7984.CrossRefGoogle Scholar
Jiang, Y. & Liu, M. 2003 Granular elasticity without the Coulomb condition. Phys. Rev. Lett. 91 (14), 144301.CrossRefGoogle ScholarPubMed
Jones, E., Oliphant, T. & Peterson, P.2001 SciPy: Open source scientific tools for Python. URL: http://www.scipy.org/ (visited on 07/28/2014).Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.Google Scholar
Kahan, W.2004 On the cost of floating-point computation without extra-precise arithmetic. URL: http://www.cs.berkeley.edu/∼wkahan/Qdrtcs.pdf (visited on 10/06/2014).Google Scholar
Kamojjala, K., Brannon, R., Sadeghirad, A. & Guilkey, J. 2013 Verification tests in solid mechanics. Engng Comput 31 (2), 193213.CrossRefGoogle Scholar
Kamrin, K. 2010 Nonlinear elasto-plastic model for dense granular flow. Intl J. Plast. 26 (2), 167188.Google Scholar
Kamrin, K. & Henann, D. 2015 Nonlocal modeling of granular flows down inclines. Soft Matter 11 (1), 179185.Google Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108 (17), 178301+.Google Scholar
Koval, G., Roux, J., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79 (2), 021306.Google Scholar
Lacaze, L. & Kerswell, R. 2009 Axisymmetric granular collapse: a transient 3D flow test of viscoplasticity. Phys. Rev. Lett. 102 (10), 108305.Google Scholar
Lagrée, P.-Y., Staron, L. & Popinet, S. 2011 The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a ${\it\mu}(\text{I})$ -rheology. J. Fluid Mech. 686, 378408.CrossRefGoogle Scholar
Lube, G., Huppert, H., Sparks, R. & Hallworth, M. 2004 Axisymmetric collapses of granular columns. J. Fluid Mech. 508, 175199.Google Scholar
Lube, G., Huppert, H., Sparks, R. & Freundt, A. 2005 Collapses of two-dimensional granular columns. Phys. Rev. E 72 (4), 110.Google Scholar
Ma, S., Zhang, X., Lian, Y. & Zhou, X. 2009 Simulation of high explosive explosion using adaptive material point method. 39 2, 101123.Google Scholar
Mast, C. M., Mackenzie-Helnwein, P., Arduino, P., Miller, G. R. & Shin, W. 2012 Mitigating kinematic locking in the material point method. J. Comput. Phys. 231 (16), 53515373.CrossRefGoogle Scholar
Mast, C. M., Arduino, P., Mackenzie-Helnwein, P. & Miller, G. R. 2015 Simulating granular column collapse using the Material Point Method. Acta Geotech. 10, 101116.Google Scholar
Nair, A. & Roy, S. 2012 Implicit time integration in the generalized interpolation material point method for finite deformation hyperelasticity. Mech. Adv. Mater. Struct. 19 (6), 465473.CrossRefGoogle Scholar
Nedderman, R. M. 1992 Statics and Kinematics of Granular Materials. Cambridge University Press.Google Scholar
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. A 367 (1909), 50915107.CrossRefGoogle ScholarPubMed
Rashid, M. 1993 Incremental kinematics for finite element applications. Intl J. Numer. Meth. Engng 36 (April), 39373956.Google Scholar
Sadeghirad, A., Brannon, R. M. & Burghardt, J. 2011 A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Intl J. Numer. Meth. Engng 86 (12), 14351456.CrossRefGoogle Scholar
Sadeghirad, A., Brannon, R. M. & Guilkey, J. E. 2013 Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces. Intl J. Numer. Meth. Engng 95 (11), 928952.Google Scholar
Schofield, A. & Wroth, P. 1968 Critical State Soil Mechanics. McGraw-Hill.Google Scholar
Silbert, L., Ertaş, D., Grest, G., Halsey, T. & Levine, D. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.Google Scholar
Silbert, L. E., Landry, J. W. & Grest, G. S. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15 (1), 110.Google Scholar
Staron, L. & Hinch, E. J. 2005 Study of the collapse of granular columns using DEM numerical simulation. J. Fluid Mech. 545, 127; arXiv:0501022 [physics].CrossRefGoogle Scholar
Staron, L., Lagrée, P.-Y. & Popinet, S. 2012 The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra. Phys. Fluids 24 (10), 103301.Google Scholar
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo: a validation test for the ${\it\mu}(\text{I})$ visco-plastic flow law. Eur. Phys. J. E 37 (1), 5.Google Scholar
Sulsky, D., Chen, Z. & Schreyer, H. L. 1994 A particle method for history-dependent materials. Comput. Meth. Appl. Mech. Engng 118 (1–2), 179196.Google Scholar
Weber, G. G., Lush, A. M., Zavaliangos, A. & Anand, L. 1990 An objective time-integration procedure for isotropic rate-independent and rate-dependent elastic-plastic constitutive equations. Intl J. Plast. 6 (6), 701744.Google Scholar
Więckowski, Z. 2003 Modelling of silo discharge and filling problems by the material point method. Task Quart. 4 (4), 701721.Google Scholar
Więckowski, Z. 2004 The material point method in large strain engineering problems. Comput. Meth. Appl. Mech. Engng 193 (39–41), 44174438.Google Scholar
Więckowski, Z. & Kowalska-Kubsik, I. 2011 Non-local approach in modelling of granular flow by the material point method. In Computer Methods in Mechanics, p. 069.Google Scholar
Zhang, D. Z., Ma, X. & Giguere, P. T. 2011 Material point method enhanced by modified gradient of shape function. J. Comput. Phys. 230 (16), 63796398.Google Scholar