Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-18T19:06:36.110Z Has data issue: false hasContentIssue false

The conservation equations for a non-equilibrium plasma

Published online by Cambridge University Press:  28 March 2006

J. P. Appleton
Affiliation:
University of Southampton Now at the General Motor Defense Research Laboratories, 6767, Hollister Avenue, Goleta, California.
K. N. C. Bray
Affiliation:
University of Southampton

Abstract

The paper is concerned with formulation of the gas dynamic conservation equations for the individual species in a non-equilibrium partially ionized gas mixture. As an example, the conservation equations for the electrons and the overall conservation equations are developed for a three component plasma consisting of electrons, singly-ionized positive ions and neutral atoms. Non-elastic collisions are represented by the collisional-radiative decay mechanism of Bates, Kingston & McWhirter (1962a, b). Maxwellian velocity distributions are assumed, but the electrons are allowed to have a temperature different from the heavier particles and to drift relative to them. Particular attention is given to the electron energy balance equation which differs from that used by other investigators.

Type
Research Article
Copyright
© 1964 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. 1962a Proc. Roy. Soc. A, 267, 297.
Bates, D. R., Kingston, A. E. & McWhirter, R. W. P. 1962b Proc. Roy. Soc. A, 270, 155.
Bray, K. N. C. 1963 Article in High Temperature Aspects of Hypersonic Flow, pp. 6787. London: Pergamon.
Brocher, E. F. 1962 Symposium on magnetoplasmadynamic electrical power generation. The Institution of Electrical Engineers, North Eastern Section. Session IV, Paper 8.
Byron, S., Stabler, R. C. & Bortz, P. I. 1962 Phys. Rev. Letters, 8, 376.
Chapman, S. & Cowling, T. G. 1960 The Mathematical Theory of Non-Uniform Gases. Cambridge University Press.
Clayden, W. A. & Coleman, P. L. 1963 Distribution of electron density and temperature in an arc heated low density wind tunnel. R.A.R.D.E. Memo (B), 57/63, ARC. 25, 254.Google Scholar
Goldsworthy, F. A. 1961 Article in Progress in Aeronautical Sciences, 1, p. 188. London: Pergamon.
Grewal, M. S. & Talbot, L. 1963 J. Fluid Mech. 16, 4.
Hinnov, E. & Hirschberg, J. G. 1962 Phys. Rev. 125, 795.
Kantrowitz, A. R. & Petschek, H. E. 1957 Article in Magnetohydrodynamics, pp. 315. Stanford University Press.
Kaufman, A. 1960 Article in La Theorie des gaz Neutres et Ionises (ed. de Witt & Detoeuf). New York: Wiley.
Kerrebrock, J. L. 1961 Proc. 2nd Symp. on Engineering Aspects of Magnetohydrodynamics, University of Pennsylvania.
Lin, S. C., Restler, E. L. & Kantrowitz, A. R. 1955 J. Appl. Phys. 26, 95.
McNab, I. R. & Lindley, B. C. 1962 In Advances in Magnetohydrodynamics. London: Pergamon.
Makin, B. & Keck, J. C. 1963 Phys. Rev. Letters, 11, 281.
Massey, H. S. W. & Burhop, E. 1952 Electronic and Ionic Impact Phenomena. Oxford University Press.
Morse, T. F. 1963 Physics of Fluids, 6, 10.
Nue, H. 1962 Symposium on magnetoplasmadynamic electrical power generation. The Institution of Electrical Engineers, North Eastern Section, Session IV, Paper 25.
Petschek, H. & Byron, S. 1957 Ann. Phys. 1, 270315.
Russell, C. R., Byron, S. & Bortz, P. I. 1963 Performance and Analysis of a Crossed-Field Accelerator. Paper read at AIAA Electrical Propulsion Conference, Colorado Springs.
Spitzer, L. 1956 Physics of Fully Ionised Gases. New York: Interscience.